Skip to main content
Log in

Transcription analysis of apple fruit development using cDNA microarrays

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The knowledge of the molecular mechanisms underlying fruit quality traits is fundamental to devise efficient marker-assisted selection strategies and to improve apple breeding. In this study, cDNA microarray technology was used to identify genes whose expression changes during fruit development and maturation thus potentially involved in fruit quality traits. The expression profile of 1,536 transcripts was analysed by microarray hybridisation. A total of 177 genes resulted to be differentially expressed in at least one of the developmental stages considered. Gene ontology annotation was employed to univocally describe gene function, while cluster analysis allowed grouping genes according to their expression profile. An overview of the transcriptional changes and of the metabolic pathways involved in fruit development was obtained. As expected, August and September are the two months where the largest number of differentially expressed genes was observed. In particular, 85 genes resulted to be up-regulated in September. Even though most of the differentially expressed genes are involved in primary metabolism, several other interesting functions were detected and will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338

    Article  PubMed  CAS  Google Scholar 

  • Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D'Ascenzo M, Gordon JS, Rose JKC, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs cDNA microarrays and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    Article  PubMed  CAS  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  PubMed  CAS  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  PubMed  CAS  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878

    Article  PubMed  CAS  Google Scholar 

  • Berüter J (2004) Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J Plant Physiol 161:1011–1029

    Article  PubMed  Google Scholar 

  • Calenge F, Drouet D, Denancé C, van de Weg WE, Brisset M, Paulin J, Durel C (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527

    Article  PubMed  Google Scholar 

  • Chang C, Shockey JA (1999) The ethylene-response pathway: signal perception to gene regulation. Curr Opin Plant Biol 2:352–358

    Article  PubMed  CAS  Google Scholar 

  • Clarke JD, Zhu T (2006) Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant J 45:630–650

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351

    Article  PubMed  CAS  Google Scholar 

  • Davies KM, Seelye JF, Irving DE, Borst WM, Hurst PL, King GA (1996) Sugar regulation of harvest-related genes in asparagus. Plant Physiol 111:877–883

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Hackler L, Zvara Á, Ferreira S, Baldé A, Dudits D, Pais MS, Puskás LG (2004) Monitoring gene expression along pear fruit development ripening and senescence using cDNA microarrays. Plant Sci 167:457–469

    Article  CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, van Arkel G, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJWJ (2005) Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor Appl Genet 111:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Gianfranceschi L, Soglio V (2004) The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hort 663:327–330

    Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Grimplet J, Romieu C, Audergon J, Marty I, Albagnac G, Lambert P, Bouchet J, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13006 expressed sequence tags. Physiol Plant 125:281–292

    Article  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  PubMed  CAS  Google Scholar 

  • Han S, Seo Y, Kim D, Sung S, Kim W (2007) Expression of MdCAS1 and MdCAS2, encoding apple b-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruit. Plant Cell Rep 26:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Lecouls A, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach a model species for fruit trees. Theor Appl Genet 110:1419–1428

    Article  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16

    Article  PubMed  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill). Theor Appl Genet 100:1074–1084

    Article  Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1227–1235

    Article  CAS  Google Scholar 

  • Lee Y, Yu G, Seo YS, Han SE, Choi Y, Kim D, Mok I, Kim WT, Sung S (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Maruyama A, Saito K, Ishizawa K (2001) Beta-cyanoalanine synthase and cysteine synthase from potato: molecular cloning biochemical characterization and spatial and hormonal regulation. Plant Mol Biol 46:749–760

    Article  PubMed  CAS  Google Scholar 

  • McClellan CA, Chang C (2008) The role of protein turnover in ethylene biosynthesis and response. Plant Sci 175:24–31

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030

    Article  PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78:570S–578S

    PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386

    Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    Article  PubMed  CAS  Google Scholar 

  • Temussi P (2006) Natural sweet macromolecules: how sweet proteins work. Cel Mol Life Sci 63:1876–1888

    Article  CAS  Google Scholar 

  • Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray [µ]PEACH10 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci 170:606–613

    Article  CAS  Google Scholar 

  • Yao Y, Li M, Liu Z, Hao Y, Zhai H (2007) A novel gene screened by cDNA-AFLP approach contributes to lowering the acidity of fruit in apple. Plant Physiol 45:139–145

    CAS  Google Scholar 

  • Yokotani N, Tamura S, Nakano R, Inaba A, Kubo Y (2003) Characterization of a novel tomato EIN3-like gene (LeEIL4). J Exp Bot 54:2775–2776

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Report 20:417–417

    Article  Google Scholar 

  • Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Märk T, Patocchi A, Gessler C, Komjanc M (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145:269–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was carried out with the financial support from the Commission of the European Communities (contract no. QLK5-CT-2002-01492), Directorate-General Research—Quality of Life and Management of Living Resources Program. This manuscript does not necessarily reflect the Commission's views and in no way anticipates its future policy in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gianfranceschi.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Sequences of primers used in quantitative RT-PCR assays (DOC 36 kb)

Table S2

List of ESTs belonging to each contig (DOC 62 kb)

Table S3

Putative function of the 177 differentially expressed genes and relative GO IDs, according to Plant Genome Database (www.plantgdb.org) (XLS 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soglio, V., Costa, F., Molthoff, J.W. et al. Transcription analysis of apple fruit development using cDNA microarrays. Tree Genetics & Genomes 5, 685–698 (2009). https://doi.org/10.1007/s11295-009-0219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0219-8

Keywords

Navigation