Skip to main content
Log in

Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

SEPALLATA (SEP) MADS box genes play essential and diverse roles in reproductive organ development. To investigate the SEP gene function in peach we isolated three SEP-like genes, PrpMADS2, PrpMADS5, and PrpMADS7, which belong to distinct SEP gene clades. They appeared as single copy genes in the peach genome and were found to preferentially express in flowers and fruits. Arabidopsis transformants expressing 35S: PrpMADS2 were indistinguishable from wild-type plants. Overexpression of PrpMADS5 led to earlier flowering. Through chimeric repressor silencing technology, PrpMADS5 was found to function in floral organ development. Expression of PrpMADS7 in Arabidopsis caused a dramatic attenuation of both juvenile and adult growth phases and, in severely affected plants, it led to flower formation immediately after the embryonic phase. Two microsatellite markers were developed for PrpMADS2 and PrpMADS5 and assigned to the genetic linkage groups 5 and 1, respectively. PrpMADS7, previously identified as PrpAGL2, and PrpMADS5 were identified as potential loci to modify the flowering time and floral organs in Prunus species. Moreover, our results showed the diversification of SEP genes in peach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild type and mutant petunia flowers. Plant Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hortic Sci 119:1312–1316

    Google Scholar 

  • Ballester J, Socias I Company R, Arus P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    Article  CAS  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Castillejo C, Romera-Branchat M, Pelaz S (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J 43:586–596

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cseke LJ, Cseke SB, Ravinder N, Taylor LC (2005) SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene 358:1–16

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15:914–925

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171(3):1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Tudor M, Weiss CA, Hu Y, Ma H (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol Biol 28:549–567

    Article  PubMed  CAS  Google Scholar 

  • Jang S, An K, Lee S, An G (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43:230–238

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Jang S, Chung J, Cho Y, An G (1997) Characterization of two rice MADS box genes that control flowering time. Mol Cells 7:559–566

    PubMed  CAS  Google Scholar 

  • Kester DE (1965) Inheritance of time of bloom in certain progenies of almond. Proc Am Soc Hortic Sci 87:214–221

    Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  PubMed  CAS  Google Scholar 

  • Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D, Teeri TH (2000) GRCD1, an AGL2-1ike MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev 5:484–495

    Article  PubMed  CAS  Google Scholar 

  • Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. T Plant Sci 10:427–435

    Article  Google Scholar 

  • Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11:22–28

    Article  CAS  Google Scholar 

  • Markel H, Chandler J, Werr W (2002) Translational fusions with the engrailed repressor domain efficiently convert plant transcription factors into dominant-negative functions. Nucleic Acids Res 30:4709–4719

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  CAS  Google Scholar 

  • Münster T, Deleu W, Wingen LU, Cacharrón J, Ouzunova M, Faigl W, Werth S, Kim JTT, Saedler H, Theissen G (2002) Maize MADS-box genes galore. Maydica 47:287–301

    Google Scholar 

  • Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci U S A 101:1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    Article  PubMed  CAS  Google Scholar 

  • Pinyopich A, Ditta DS, Savidge B, Liljergren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  PubMed  CAS  Google Scholar 

  • Qiao F (2003) Construction of a genetic linkage group with RAPD and AFLP markers and location of a pistil abortion trait in peach. Master Degree Thesis of Northwest Agricultural and Forestry University (in Chinese with English abstract)

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet (2005) 110:959–968

    Article  CAS  Google Scholar 

  • Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519–550

    Article  PubMed  CAS  Google Scholar 

  • Socias i Company R, Felipe AJ, Gómez AJ (1998) Genetics of late blooming in almond. Acta Hortic 484:261–266

    Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Sung SK, Moon YH, Chung JE, Lee SY, Park HG, An G (2001) Characterization of MADS box genes from hot pepper. Mol Cells 11:352–359

    PubMed  CAS  Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Uimari A, Kotilainen M, Elomaa P, Yu D, Albert VA, Teeri TH (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci U S A 101:15817–15822

    Article  PubMed  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Galzebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Zahn LM, Kong HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223:698–707

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Pere ArÚs of Departament de Genética Vegetal, Laboratori CSIC-IRTA de Genética Molecular Vegetal, Barcelona, Spain, for providing us the mapping materials, and Dr. X.-Y. Kong of Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, for her generous help in Southern blotting analysis. This research was supported by National Natural Science Foundation (Grant No.30500395) and National “863” Project of China (Grant No.2006AA10Z130 and 2006AA100108-3-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Cai Ma.

Additional information

Communicated by A. Abbott

The gene sequences have been deposited in GenBank and will appear under the accession numbers BQ102369, EF440351, and EF440352.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhang, L., Xie, H. et al. Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch). Tree Genetics & Genomes 4, 693–703 (2008). https://doi.org/10.1007/s11295-008-0143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0143-3

Keywords

Navigation