Skip to main content
Log in

Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The MADS box genes are essential for floral development of Arabidopsis because they regulate flowering time and the development of floral organs. In this study, a MADS box gene, TaMADS1, was isolated and characterized from wheat (Triticum aestivum L.). The analysis of amino acid sequences and phylogenetic tree suggested that the TaMADS1 gene might be a SEPALLATA (SEP)-like gene. RNA hybridization indicated that the TaMADS1 transcripts began to accumulate in spikelets, and then, in floret primordia and floral organ primordia in wheat. In the later stage of floret development, the TaMADS1 transcripts accumulated in four whorls of young floral organs. The ectopic expression of TaMADS1 in Arabidopsis caused early flowering and altered the development of all floral organs. Further studies demonstrated that the early flowering phenotype in transgenic plants could be correlated with the upregulation of some flowering time genes and flower meristem identity genes. Our results suggest that TaMADS1 could be a putative SEP-like gene, and has diverse roles in flower development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

GUS:

Beta-glucuronidase

SEP :

SEPALLATA

RT-PCR:

Reverse transcription polymerase chain reaction

SSC:

Standard saline citrate

SDS:

Sodium dodecyl sulfate

References

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild type and mutant petunia flowers. Plant Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44

    Article  PubMed  CAS  Google Scholar 

  • Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63–68

    Article  PubMed  CAS  Google Scholar 

  • Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13:1865–1875

    Article  PubMed  CAS  Google Scholar 

  • Blázquez MA (2000) Flower development pathways. J Cell Sci 113:3547–3548

    PubMed  Google Scholar 

  • Blázquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Development 124:3835–3844

    Google Scholar 

  • Bradley DJ, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Chen LJ, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011–2024

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coupland G (1995) Flower development. LEAFY blooms in aspen. Nature 377:482–483

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15:914–925

    Article  PubMed  CAS  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51

    Article  PubMed  CAS  Google Scholar 

  • Greco R, Stagi L, Colombo L, Angenent GC, Sari-Gorla M, Pe ME (1997) MADS box genes expressed in developing inflorescences of rice and sorghum. Mol Gen Genet 253:615–623

    Article  PubMed  CAS  Google Scholar 

  • Hama E, Takumi S, Ogihara Y, Murai K (2004) Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720

    Article  PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Tudor M, Weiss CA, Hu Y, Ma H (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol Biol 28:549–567

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Jang S, Chung J, Cho Y, An G (1997) Characterization of two rice MADS box genes that control flowering time. Mol Cells 7:559–566

    PubMed  CAS  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-like 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2367

    Article  PubMed  CAS  Google Scholar 

  • Lenhard M, Bohnert A, Jürgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1008

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1 AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev 5:484–495

    Article  PubMed  CAS  Google Scholar 

  • Malcomber ST, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16:1692–1706

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11:22–28

    Article  CAS  Google Scholar 

  • Meguro A, Takumi S, Ogihara Y, Murai K (2003) WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod 15:221–230

    CAS  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003a) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  Google Scholar 

  • Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR (2003b) EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15:681–693

    Article  CAS  Google Scholar 

  • Münster T, Deleu W, Wingen LU, Ouzunova M, Cacharrón J, Faigl W, Werth S, Kim JTT, Saedler H, Theissen G (2002) Maize MADS-box genes galore. Maydica 47:287–301

    Google Scholar 

  • Murai K, Murai R, Takumi S, Ogihara Y (1998) Cloning and characterization of cDNAs corresponding to the wheat MADS box genes. In: Slinkard AE (ed) Proceedings of the 9th international wheat genet symposium. University Extension Press, Sasketchewan, pp 89–94

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29:169–181

    Article  PubMed  Google Scholar 

  • Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol 44:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101:1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box genes. Nat Rev Genet 2:186–195

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Lee I, Blázquez MA, Weigel D (1998) Flowering time genes modulate the response to LEAFY activity. Genetics 150:403–410

    PubMed  CAS  Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129:2519–2527

    PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001a) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    Article  CAS  Google Scholar 

  • Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF (2001b) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184

    Article  CAS  Google Scholar 

  • Pelucchi N, Formara F, Favalli C, Masiero S, Lago C, Pe ME, Colombo L, Kate MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122

    Article  CAS  Google Scholar 

  • Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, Lifschitz E (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1:255–266

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  PubMed  CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721–733

    Article  PubMed  CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  PubMed  CAS  Google Scholar 

  • Shchennikova AV, Shulga OA, Immink R, Skryabin KG (2004) Identification and characterization of four Chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134:1632–1641

    Article  PubMed  CAS  Google Scholar 

  • Sung ZR, Belachew A, Bai S, Bertrand-Garcia R (1992) EMF, an Arabidopsis gene required for vegetative shoot development. Science 258:1645–1647

    Article  PubMed  Google Scholar 

  • Theiβen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Theißen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Article  PubMed  Google Scholar 

  • Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15:2680–2693

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1993) Activation of floral homeotic genes in Arabidopsis. Science 261:1723–1726

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  PubMed  CAS  Google Scholar 

  • Zahn LM, Kong HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Y. B. Xue (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing) for his generous help with real-time quantitative PCR. This research was supported by the Project of Transgenic Plants, National Natural Science Foundation, the Major State Basic Research Program and the 863 Project of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Sheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X.Y., Cheng, Z.J. & Zhang, X.S. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223, 698–707 (2006). https://doi.org/10.1007/s00425-005-0123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0123-x

Keywords

Navigation