Skip to main content

Advertisement

Log in

Development and characterization of simple sequence repeats for flowering dogwood (Cornus florida L.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Abundant, codominant simple sequence repeats (SSRs) markers can be used for constructing genetic linkage maps and in marker-assisted breeding programs. Enrichment methods for SSR motifs were optimized with the ultimate aim of developing numerous loci in flowering dogwood (C. florida L.) genome. Small insert libraries using four motifs (GT, CT, TGG, and AAC) were constructed with C. florida ‘Cherokee Brave’ deoxyribonucleic acid (DNA). Colony polymerase chain reaction (PCR) of 2,208 selected clones with three primers we reported previously indicated that 47% or 1,034 of the clones harbored one of the four targeted SSR motifs. Sequencing the putative positive clones confirmed that nearly 99% (1,021 of 1,034) of them contained the desired motifs. Of the 871 unique SSR loci, 617 were dinucleotide repeats (70.8%), and 254 were trinucleotide or longer repeats (29.2%). In total, 379 SSR loci had perfect structure, 237 had interrupted, and 255 had compound structure. Primer pairs were designed from 351 unique sequences. The ability of the 351 SSR primer pairs to amplify specific loci was evaluated with genomic DNA of ‘Appalachian Spring’ and ‘Cherokee Brave’. Of these primers, 311 successfully amplified product(s) with ‘Cherokee Brave’ DNA, 21 produced weak or faint products, and 19 did not amplify any products. Additionally, 218 of the 311 primers pairs revealed polymorphisms between the two cultivars, and 20 out of 218 primers detected an average of 13.7 alleles from 38 selected Cornus species and hybrids. These SSR loci constitute a valuable resource of ideal markers for both genetic linkage mapping and gene tagging of flowering dogwood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ament MH, Windham MT, Trigiano RN (2000) Determination of parentage of flowering dogwood (Cornus florida) seedlings using DNA amplification fingerprinting. J Arboric 26:206–212

    Google Scholar 

  • Cabe PR, Liles JS (2002) Dinucleotide microsatellite loci isolated from flowering dogwood (Cornus florida L.). Mol Ecol Notes 2:150–152

    Article  CAS  Google Scholar 

  • Caetano-Anollés G, Schlarbaum SE, Trigiano RN (1999) DNA amplification fingerprinting and marker screening for pseudo-testcross mapping of flowering dogwood (Cornus florida L.). Euphytica 106:209–222

    Article  Google Scholar 

  • Cai HW, Yuyama N, Tamaki H, Yoshizawa A (2003) Isolation and characterization of simple sequence repeat markers in the hexaploid forage grass timothy (Phleum pretense L.). Theor Appl Genet 107:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Knorr C, Bornemann-Kolatzki K, Ren J, Huang L, Rohrer GA, Brenig B (2005) Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones. BMC Genetics 6:54 (available at: http://www.biomedcentral.com/1471-2156/6/54)

    Article  PubMed  CAS  Google Scholar 

  • Cheng HH, Levin I, Vallejo RL, Khatib H, Dodgson JB, Crittenden LB, Hillel J (1995) Development of a genetic map of the chicken with markers of high utility. Poult Sci 74:1855–1874

    PubMed  CAS  Google Scholar 

  • Connell JP, Pammi S, Iqbal MJ, Huizinga T, Reddy AS (1998) A high throughput procedure for capturing microsatellites from complex plant genomes. Plant Mol Biol Rep 16:341–349

    Article  CAS  Google Scholar 

  • Cornall RJ, Atiman TJ, Hearne CM, Todd JA (1991) The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10:874–881

    Article  PubMed  CAS  Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20:758–760

    PubMed  CAS  Google Scholar 

  • Ender A, Schwenk K, Stadler T, Streit B, Schierwater B (1996) RAPD identification of microsatellites in Daphnia. Mol Ecol 5:437–441

    Article  PubMed  CAS  Google Scholar 

  • Fisher D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). BioTechniques 24:796–802

    Google Scholar 

  • Fujishima-Kanaya N, Toki D, Suzuki K, Sawazaki T, Hiraiwa H, Lida M, Hayashi T, Uenishi H, Wada Y, Ito Y, Awata T (2003) Development of 50 gene-associated microsatellite markers using BAC clones and the construction of a linkage map of swine chromosome 4. Anim Genet 34(2):135–141

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and herbaceous plants. Plant Mol Bio Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gardner MG, Cooper SJB, Bull CM, Grant WN (1999) Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. J Heredity 90:301–304

    Article  CAS  Google Scholar 

  • Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27(3):500–507

    PubMed  CAS  Google Scholar 

  • Jakse J, Javornik B (2001) High throughput isolation of microsatellites in hop (Humulus lupulus L.). Plant Mol Biol Rep 19:217–226

    Article  CAS  Google Scholar 

  • Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Kandpal RP, Kandpal G, Weissman SM (1994) Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proc Natl Acad Sci USA 91:88–92

    Article  PubMed  CAS  Google Scholar 

  • Kaveriappa KM, Phillips LM, Trigiano RN (1997) Micropropagation of flowering dogwood (Cornus florida L.) from seedlings. Plant Cell Rep 16:485–489

    CAS  Google Scholar 

  • Kijas JMH, Fowler JCS, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. BioTechniques 16:656–662

    PubMed  CAS  Google Scholar 

  • Kölliker R, Jones ES, Drayton MC, Dupal MP, Forster JW (2001) Development and characterison of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424

    Article  Google Scholar 

  • Lagercrantz U, Ellegren H, Anderson L (1993) The aboundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acid Res 21:1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Lench NJ, Norris A, Bailey A, Booth A, Markham AF (1996) Vectorette PCR isolation of microsatellite repeat sequences using anchored dinucleotide primers. Nucleic Acid Res 24:2190–2191

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liou JT, Shieh BH, Chen SW, Li C (1999) An improved alkaline lysis method for minipreparation of plasmid DNA. Prep Biochem Biotechnol 29:49–54

    Article  PubMed  CAS  Google Scholar 

  • Lunt DH, Hutchinson WF, Carvalho GR (1999) An efficient method for PCR-based isolation of microsatellite arrarys (PIMA). Molec Ecol 8(5):891–894

    Article  CAS  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards K, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breed 11:127–136

    Article  CAS  Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S (2005) Development and characterization of a larger set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366

    Article  CAS  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  • Orton ER Jr (1993) New large-bracted dogwoods from Rutgers University. Comb Proc Intl Plant Propag Soc 43:487–490

    Google Scholar 

  • Ostrander EA, Jong PM, Rine J, Duyk G (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci USA 89:3419–3423

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of AFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rossetto M, McLauchlan A, Harriss FCL, Henry RJ, Baverstock PR, Lee LS, Maguire TL, Edwards KJ (1999) Abundance and polymorphism of microsatellite markers in the tea tree (Melaleuca alternifolia, Myrtaceae). Theor Appl Genet 98:1091–1098

    Article  CAS  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeats in rye (Secale cereale L.). Genome 42:964–972

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. CSH Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Smith NR, Trigiano RN, Windham MT, Lamour KH, Finley LS, Wang X, Rinehart TA (2007) AFLP markers identify Cornus florida cultivars and lines. J Am Soc Hortic Sci 132:90–96

    CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  PubMed  CAS  Google Scholar 

  • Vadopalas B, Bentzen P (2000) Isolation and characterization of di-and tetranucleotide microsatellite loci in geoduck clams, Panopea abrupta. Molec Ecol 9:1435–1436

    Article  CAS  Google Scholar 

  • Waldbieser GC, Quiniou SM, Karsi A (2003) Rapid development of gene-tagged microsatellite markers from bacterial artificial chromosome clones using anchored TAA repeat primers. BioTechniques 35(5):976–979

    PubMed  CAS  Google Scholar 

  • Wang XW, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 109:352–360

    PubMed  CAS  Google Scholar 

  • Wang XW, Trigiano RN, Windham MT, DeVries RE, Scheffler BE, Rinehart TA, Spiers JM (2007) A simple PCR procedure for discovering microsatellites from small insert libraries. Mol Ecol Notes 7:558–561

    Article  CAS  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA)n-(dG-dT)n polymorphisms. Genomics 7:524–530

    Article  PubMed  CAS  Google Scholar 

  • Witte WT, Windham MT, Windham AS, Hale FA, Caltterbuck WK (2000). Dogwood for American gardens. The University of Tennessee Agriculture Extension Service, Knoxville. PB1670

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002) Simple sequence repeats for genetic analysis in pear. Euhytica 124:129–137

    Article  CAS  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA Agreement no. 58-6404-2-0057. We thank Mary Duke, Linda Ballard, and Xiaofen Liu for library sequencing. Any library/sequence information requirements can be addressed to Dr. Robert N. Trigiano at rtrigian@utk.edu. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Trigiano.

Additional information

Communicated by M. Morgante

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

SSR primers developed for flowering dogwood (Cornus florida ) (DOC 697 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Trigiano, R., Windham, M. et al. Development and characterization of simple sequence repeats for flowering dogwood (Cornus florida L.). Tree Genetics & Genomes 4, 461–468 (2008). https://doi.org/10.1007/s11295-007-0123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-007-0123-z

Keywords

Navigation