Ecological Research

, Volume 30, Issue 2, pp 201–210 | Cite as

Synergies between observational and modeling studies at the Takayama site: toward a better understanding of processes in terrestrial ecosystems

Special Feature Long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993

Abstract

This paper reviews past and ongoing ecological studies at the Takayama forest site, one of Japan’s long-term research sites with intensive studies; the emphasis here is on the synergies between observational and modeling studies. This synergism has been encouraged because global environmental change is a complicated and interdisciplinary issue that requires this type of collaboration. The increasing amount and quality of observational data available from this site helps researchers to better constrain their model simulations because substantial uncertainties remain in the behavior of models in their current form. In addition, modeling studies encourage observational research by integrating observational data within a comprehensive framework. They do this by demanding more long-term and high-quality data related to specific ecological processes, and by identifying high-priority processes and parameters that should be studied. We describe the types of modeling studies that have been conducted and how observational data from the Takayama site have improved the accuracy of these models. Many terrestrial ecosystem models have been applied to data from the site, both to validate the present forms of the models and to refine the structure and parameterization of the models. The development of new or improved terrestrial ecosystem models will be further facilitated by the requirements to simulate atmosphere–ecosystem exchanges and internal biogeochemical processes, as well as simulating their responses to a changing environment. We conclude by discussing the remaining research gaps and opportunities for deepening our understanding of terrestrial ecosystems through future collaborative studies.

Keywords

Carbon cycle Global change Interdisciplinary research Net ecosystem exchange Temperate deciduous forest 

References

  1. Alexandrov GA, Yamagata Y, Saigusa N, Oikawa T (2005) Re-calibrating TsuBiMo with eddy-covariance measurements at Takayama. Agr For Meteorol 134:135–142CrossRefGoogle Scholar
  2. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Pau UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  3. Baldocchi DD, Black TA, Curtis PS, Falge E, Fuentes JD, Granier A, Gu L, Knohl A, Pilegaard K, Schmid HP, Valentini R, Wilson K, Wofsy S, Xu L, Yamamoto S (2005) Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int J Biometeorol 49:377–387CrossRefPubMedGoogle Scholar
  4. Chen L, Driscoll CT, Gbondo-Tugbawa S, Mitchell MJ, Murdoch PS (2004) The application of an integrated biogeochemical model (PnET-BGC) to five forested watersheds in the Adirondack and Catskill regions of New York. Hydrol Proc 18:2631–2650CrossRefGoogle Scholar
  5. Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460. doi:10.1007/s10265-013-0565-3 CrossRefPubMedGoogle Scholar
  6. Cox PM (2001) Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre Technical Note 24, United Kingdom Meteorological Office, pp 16Google Scholar
  7. Hadano M, Nasahara KN, Motohka T, Noda HM, Murakami K, Hosaka M (2013) High-resolution prediction of leaf onset date in Japan in the 21st century under the IPCC A1B scenario. Ecol Evol 3:1798–1807. doi:10.1002/ece3.575 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Higuchi K, Shashkov A, Chan D, Saigusa N, Murayama S, Yamamoto S, Kondo H, Chen J, Liu J, Chen B (2005) Simulations of seasonal and inter-annual variability of gross primary production at Takayama with BEPS ecosystem model. Agr For Meteorol 134:143–150CrossRefGoogle Scholar
  9. Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li SG, Nakai Y, Takagi K, Tani M, Wang H (2008) Spatial distribution of carbon balance in forest ecosystem across East Asia. Agr For Meteorol 148:761–775. doi:10.1016/j.agrformet.2007.11.016 CrossRefGoogle Scholar
  10. Ichii K, Kondo M, Lee YH, Wang SQ, Kim J, Ueyama M, Lim HJ, Shi H, Suzuki T, Ito A, Ju W, Huang M, Sasai T, Asanuma J, Han S, Hirano T, Hirata R, Kato T, Kwon H, Li SG, Li YN, Maeda T, Miyata A, Matsuura Y, Murayama S, Nakai Y, Ohta T, Saitoh TM, Saigusa N, Takagi K, Tang YH, Wang HM, Yu GR, Zhang YP, Zaho FH (2013) Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: toward future modeling efforts. J For Res 18:13–20. doi:10.1007/s10310-012-0367-9 CrossRefGoogle Scholar
  11. Inatomi M, Ito A, Ishijima K, Murayama S (2010) Greenhouse gas budget of a cool temperate deciduous broadleaved forest in Japan estimated using a process-based model. Ecosys 13:472–483. doi:10.1007/s10021-010-9332-7 CrossRefGoogle Scholar
  12. Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agr For Meteorol 148:738–747. doi:10.1016/j.agrformet.2007.12.007 CrossRefGoogle Scholar
  13. Ito A (2010a) Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model. J Plant Res 123:577–588. doi:10.1007/s10265-009-0305-x CrossRefPubMedGoogle Scholar
  14. Ito A (2010b) Evaluation of defoliation impacts of tropical cyclones on the forest carbon budget using flux data and a process-based model. J Geophys Res 115:G04013. doi:10.1029/2010JG001314 Google Scholar
  15. Ito A, Saigusa N, Murayama S, Yamamoto S (2005) Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: analysis of seasonal and interannual change. Agr For Meteorol 134:122–134CrossRefGoogle Scholar
  16. Ito A, Muraoka H, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2006) Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecol Res 21:137–149CrossRefGoogle Scholar
  17. Ito A, Inatomi M, Mo W, Lee M, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2007) Examination of model-estimated ecosystem respiration using flux measurements data from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus 59B:616–624CrossRefGoogle Scholar
  18. Ito A, Ichii K, Kato T (2010) Spatial and temporal patterns of soil respiration over the Japanese Archipelago: a model intercomparison study. Ecol Res 25:1033–1044. doi:10.1007/s11284-010-0729-8 CrossRefGoogle Scholar
  19. Jia S, Akiyama T (2005) A precise, unified method for estimating carbon storage in cool-temperate deciduous forest ecosystems. Agr For Meteorol 134:70–80CrossRefGoogle Scholar
  20. Jin P, Wang Q, Iio A, Tenhunen J (2012) Retrieval of seasonal variation in photosynthetic capacity from multi-source vegetation indices. Ecol Inform 7:7–18CrossRefGoogle Scholar
  21. Kamakura M, Kosugi Y, Muramatsu K, Muraoka H (2012) Simulations and observations of patchy stomatal behavior in leaves of Quercus crispula, a cool-temperate deciduous broad-leaved tree species. J Plant Res 125:339–349. doi:10.1007/s10265-011-0460-8 CrossRefPubMedGoogle Scholar
  22. Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Global Change Biol 14:2333–2348. doi:10.1111/j.1365-2486.2008.01646.x CrossRefGoogle Scholar
  23. Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jpn J Ecol 17:70–87Google Scholar
  24. Kitagawa H, Matsumoto E (1995) Climatic implications of δ13C variations in a Japanese cedar (Cryptomeria japonica) during the last two millennia. Geophys Res Lett 22:2155–2158CrossRefGoogle Scholar
  25. Kondo H, Saigusa N, Murayama S, Yamamoto S, Kannari A (2001) A numerical simulation of the daily variation of CO2 in the central part of Japan–summer case. J Meteor Soc Jpn 79:11–21CrossRefGoogle Scholar
  26. Kondo MY, Muraoka H, Uchida M, Yazaki Y, Koizumi H (2005) Refixation of respired CO2 by understory vegetation in a cool-temperate deciduous forest in Japan. Agr For Meteorol 134:110–121CrossRefGoogle Scholar
  27. Kondo MS, Ichii K, Ueyama M, Mizoguchi Y, Hirata R, Saigusa N (2013) The role of carbon flux and biometric observations in constraining a terrestrial ecosystem model: a case study in disturbed forests in East Asia. Ecol Res 28:893–905. doi:10.1007/s11284-013-1072-7 CrossRefGoogle Scholar
  28. Kuribayashi M, Noh NJ, Saitoh TM, Tamagawa I, Wakazuki Y, Muraoka H (2013) Comparison of snow water equivalent estimated in central Japan by high-resolution simulations using different land-surface models. Sola 9:148–152. doi:10.2151/sola.2013-033 CrossRefGoogle Scholar
  29. Lee MS, Nakane K, Nakatsubo T, Koizumi H (2005) The importance of root respiration in annual soil carbon fluxes in a cool-temperate deciduous forest. Agr For Meteorol 134:95–101CrossRefGoogle Scholar
  30. Likens GE (2004) Some perspectives on long-term biogeochemical research from the Hubbard Brook ecosystem study. Ecol 85:2355–2362CrossRefGoogle Scholar
  31. Luo Y, Ogle K, Tucker C, Fei S, Gao C, LaDeau S, Clark JS, Schimel DS (2011) Ecological forecasting and data assimilation in a data-rich era. Ecol Appl 21:1429–1442CrossRefPubMedGoogle Scholar
  32. Mo W, Lee MS, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agr For Meteorol 134:81–94CrossRefGoogle Scholar
  33. Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broad-leaved forest: implications to the ecosystem carbon gain. Agr For Meteorol 134:39–59CrossRefGoogle Scholar
  34. Muraoka H, Koizumi H (2009) Satellite ecology (SATECO)—linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20. doi:10.1007/s10265-008-0188-2 CrossRefPubMedGoogle Scholar
  35. Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama site. J Plant Res 123:563–576. doi:10.1007/s10265-009-0270-4 CrossRefPubMedGoogle Scholar
  36. Muraoka H, Noda HM, Nagai S, Motohka T, Saitoh TM, Nasahara KN, Saigusa N (2013) Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. J Plant Ecol 6:393–407. doi:10.1093/jpe/rts037 CrossRefGoogle Scholar
  37. Murayama S, Yamamoto S, Saigusa N, Kondo H, Takamura C (2005) Statistical analyses of inter-annual variations in the vertical profile of atmospheric CO2 mixing ratio and carbon budget in a cool-temperate deciduous forest in Japan. Agr For Meteorol 134:17–26CrossRefGoogle Scholar
  38. Murayama S, Takamura C, Yamamoto S, Saigusa N, Morimoto S, Kondo H, Nakazawa T, Aoki S, Usami T, Kondo M (2010) Seasonal variations of atmospheric CO2, δ13C, and δ18O at a cool temperate deciduous forest in Japan: influence of Asian monsoon. J Geophys Res 115:D17304. doi:10.1029/2009JD013626 CrossRefGoogle Scholar
  39. Nagai S, Saitoh TM, Noh NJ, Yoon TK, Kobayashi H, Suzuki R, Nasahara KN, Son Y, Muraoka H (2013) Utility of information in photographs taken upwards from the floor of closed canopy deciduous broadleaved and closed-canopy evergreen coniferous forests for continuous observation of canopy phenology. Ecol Inform 18:10–19. doi:10.1016/j.ecoinf.2013.05.005 CrossRefGoogle Scholar
  40. Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agr For Meteorol 148:1136–1146. doi:10.1016/j.agrformet.2008.02.011 CrossRefGoogle Scholar
  41. Nishina K, Ito A, Beerling DJ, Cadule P, Ciais P, Clark DB, Falloon P, Friend AD, Kahana R, Kato E, Keribin R, Lucht W, Lomas M, Rademacher TT, Pavlick R, Schaphoff S, Vuichard N, Warszwaski L, Yokohata T (2014) Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth System Dyn 5:197–209. doi:10.5194/esd-5-197-2014 CrossRefGoogle Scholar
  42. Noda H, Motohka T, Murakami K, Muraoka H, Nasahara KN (2014) Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan. Ecol Res 29:111. doi:10.1007/s11284-013-1096-z CrossRefGoogle Scholar
  43. Noh NJ, Kuribayashi M, Saitoh TM, Inoue T, Muraoka H (2013) Response of belowground carbon fluxes to experimental soil warming in a cool-temperate deciduous broad-leaved forest of Takayama. In: Proceedings of the synthesis workshop on the carbon budget and forest ecosystem in the Asian monitoring network. pp 76Google Scholar
  44. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270CrossRefPubMedGoogle Scholar
  45. Ohtsuka T, Akiyama T, Hashimoto Y, Inatomi M, Sakai A, Jia S, Mo W, Tsuda S, Koizumi H (2005) Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower. Agr For Meteorol 134:27–38CrossRefGoogle Scholar
  46. Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Global Change Biol 15:1015–1024. doi:10.1111/j.1365-2486.2008.01800.x CrossRefGoogle Scholar
  47. Ohtsuka T, Shizu Y, Hirota M, Yashiro Y, Shugang J, Iimura Y, Koizumi H (2014) Role of coarse woody debris in the carbon cycle of Takayama forest, central Japan. Ecol Res 29:91–101. doi:10.1007/s11284-013-1102-5 CrossRefGoogle Scholar
  48. Oikawa T (1985) Simulation of forest carbon dynamics based on dry-matter production model: 1. Fundamental model structure of a tropical rainforest ecosystem. Bot Mag 98:225–238CrossRefGoogle Scholar
  49. Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563 CrossRefGoogle Scholar
  50. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecol 44:322–331CrossRefGoogle Scholar
  51. Potithep S, Yasuoka Y (2011) Application of the 3-PG model for gross primary productivity estimation in deciduous broadleaf forests: a study area in Japan. Forests 2:590–609. doi:10.3390/f2020590 CrossRefGoogle Scholar
  52. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841CrossRefGoogle Scholar
  53. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao S, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil Trans Royal Soc B365:3227–3246. doi:10.1098/rstb.2010.0102 CrossRefGoogle Scholar
  54. Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agr For Meteorol 112:203–215CrossRefGoogle Scholar
  55. Saigusa N, Ichii K, Murakami H, Hirata R, Asanuma J, Den H, Han SJ, Ide R, Li SG, Ohta T, Sasai T, Wang SQ, Yu GR (2010) Impact of meteorological anomalies in the 2003 summer of gross primary productivity in East Asia. Biogeosci 7:641–655CrossRefGoogle Scholar
  56. Saitoh TM, Nagai S, Noda HM, Muraoka H, Nasahara KN (2012a) Examination of the extinction coefficient in the Beer–Lambert law for an accurate estimation of the forest canopy leaf area index. Forest Sci Tech 8:67–76. doi:10.1080/21580103.2012.673744 CrossRefGoogle Scholar
  57. Saitoh TM, Nagai S, Saigusa N, Kobayashi H, Suzuki R, Nasahara KN, Muraoka H (2012b) Assessing the use of camera-based indices for characterizing canopy phenology in relation to gross primary production in a deciduous broad-leaved and an evergreen coniferous forest in Japan. Ecol Inform 11:45–54. doi:10.1016/j.ecoinf.2012.05.001 CrossRefGoogle Scholar
  58. Saitoh TM, Nagai S, Yoshino J, Muraoka H, Saigusa N, Tamagawa I (2012c) Functional consequences of differences in canopy phenology for the carbon budget of two cool-temperate forest types: simulations using the NCAR/LSM model and validation using tower flux and biometric data. Eur J For Res 15:19–30Google Scholar
  59. Sakai T, Akiyama T (2005) Quantifying the spatio-temporal variability of net primary production of the understory species, Sasa senanensis, using multipoint measuring techniques. Agr For Meteorol 134:60–69CrossRefGoogle Scholar
  60. Sakai T, Akiyama T, Saigusa N, Yamamoto S, Yasuoka Y (2006) The contribution of gross primary production of understory dwarf bamboo, Sasa senanensis, in a cool-temperate deciduous broadleaved forest in central Japan. For Ecol Manage 236:259–267. doi:10.1016/j.foreco.2006.09.022 CrossRefGoogle Scholar
  61. Sasai T, Okamoto K, Hiyama T, Yamaguchi Y (2007) Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. Ecol Model 208:135–144. doi:10.1016/j.ecolmodel.2007.05.014 CrossRefGoogle Scholar
  62. Sasai T, Saigusa N, Nishida K, Ito A, Hashimoto H, Nemani R, Hirata R, Ichii K, Takagi K, Saitoh TM, Ohta T, Murakami K, Yamaguchi Y, Oikawa T (2011) Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 1-km grid resolution. Rem Sens Environ 115:1758–1771. doi:10.1016/j.rse.2011.03.007 CrossRefGoogle Scholar
  63. Satomura T, Hashimoto Y, Koizumi H, Nakane K, Horikoshi T (2006) Seasonal patterns of fine root demography in a cool-temperate deciduous forest in central Japan. Ecol Res 21:741–753CrossRefGoogle Scholar
  64. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185CrossRefGoogle Scholar
  65. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agr For Meteorol 113:185–222CrossRefGoogle Scholar
  66. Yamaji T, Sakai T, Endo T, Baruah PJ, Akiyama T, Saigusa N, Nakai Y, Kitamura K, Ishizuka M, Yasuoka Y (2008) Scaling-up technique for net ecosystem productivity of deciduous broadleaved forests in Japan using MODIS data. Ecol Res 23:765–775CrossRefGoogle Scholar
  67. Yamamoto S, Koizumi H (2005) Long-term carbon exchange at Takayama site, a cool-temperate deciduous forest in Japan. Agr For Meteorol 134:1–3CrossRefGoogle Scholar
  68. Yamamoto S, Murayama S, Saigusa N, Kondo H (1999) Seasonal and inter-annual variability of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus 51B:402–413CrossRefGoogle Scholar
  69. Yonemura S, Yokozawa M, Sakurai G, Kishimoto-Mo A, Lee N, Murayama S, Ishijima K, Shirato Y, Koizumi H (2013) Vertical soil–air CO2 dynamics at the Takayama deciduous broadleaved forest AsiaFlux site. J For Res 18:49–59. doi:10.1007/s10310-012-0385-7 CrossRefGoogle Scholar
  70. Zobitz JM, Moore DJP, Quaife T, Braswell BH, Bergeson A, Anthony JA, Monson RK (2014) Joint data assimilation of satellite reflectance and net ecosystem exchange data constraints ecosystem carbon fluxes at a high-elevation subalpine forest. Agr For Meteorol 195–196:73–88. doi:10.1016/j.agrformet.2014.04.011 CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2014

Authors and Affiliations

  1. 1.National Institute for Environmental StudiesTsukubaJapan
  2. 2.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  3. 3.River Basin Research CenterGifu UniversityGifuJapan
  4. 4.School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations