Skip to main content

Advertisement

Log in

Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model

  • JPR Symposium
  • Carbon cycle process in East Asia
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Using a process-based model, I assessed how ecophysiological processes would respond to near-future global changes predicted by coupled atmosphere–ocean climate models. An ecosystem model, Vegetation Integrative SImulator for Trace gases (VISIT), was applied to four sites in East Asia (different types of forest in Takayama, Tomakomai, and Fujiyoshida, Japan, and an Alpine grassland in Qinghai, China) where observational flux data are available for model calibration. The climate models predicted +1–3°C warming and slight change in annual precipitation by 2050 as a result of an increase in atmospheric CO2. Gross primary production (GPP) was estimated to increase substantially at each site because of improved efficiency in the use of water and radiation. Although increased respiration partly offset the GPP increase, the simulation showed that these ecosystems would act as net carbon sinks independent of disturbance-induced uptake for recovery. However, the carbon budget response relied strongly on nitrogen availability, such that photosynthetic down-regulation resulting from leaf nitrogen dilution largely decreased GPP. In relation to long-term monitoring, these results indicate that the impacts of global warming may be more evident in gross fluxes (e.g., photosynthesis and respiration) than in the net CO2 budget, because changes in these fluxes offset each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Amthor JS (1991) Respiration in a future, higher CO2 world. Plant Cell Environ 14:13–20

    Article  CAS  Google Scholar 

  • Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12:191–205

    Article  Google Scholar 

  • Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Boer GJ, Yu B, Kim S-J, Flato GM (2004) Is there observational support for an El Niño-like pattern of future global warming? Geophys Res Lett 31:L06201. doi:10.1029/2003GL018722

    Article  Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Doi H, Takahashi M (2008) Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Glob Ecol Biogeogr 17:556–561

    Article  Google Scholar 

  • Emori S, Hasegawa A, Suzuki T, Dairaku K (2005) Validation, parameterization dependence, and future projection of daily precipitation simulated with a high-resolution atmospheric GCM. Geophys Res Lett 32:L06708. doi:10.1029/2004GL022306

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increases CO2: implications from the plant to global scale. Plant Cell Environ 18:1214–1225

    Article  Google Scholar 

  • Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  • Hamilton JG, Thomas RB, Delucia EH (2001) Direct indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982

    Article  CAS  Google Scholar 

  • Hikosaka K, Onoda Y, Kinugasa T, Nagashima H, Anten NPR, Hirose T (2005) Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. Ecol Res 20:243–253

    Article  CAS  Google Scholar 

  • Hirata R, Hirano T, Saigusa N, Fujinuma Y, Inukai K, Kitamori Y, Takahashi Y, Yamamoto S (2007) Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest. Agric For Meteorol 147:110–124

    Article  Google Scholar 

  • Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Spatial distribution of carbon balance in forest ecosystem across East Asia. Agric For Meteorol 148:761–775

    Article  Google Scholar 

  • Hirose T, Ackerly DD, Traw MB, Damseier D, Bazzaz FA (1997) CO2 elevation, canopy photosynthesis, and optimal leaf area index. Ecology 78:2339–2350

    Google Scholar 

  • Ichii K, Suzuki T, Kato T, Ito A, Hajima T, Ueyama M, Sasai T, Hirata R, Saigusa N, Ohtani Y, Takagi K (2009) Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations. Biogeosci Discuss 6:8455–8502

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738–747

    Article  Google Scholar 

  • Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151:147–179

    Article  Google Scholar 

  • Ito A, Oikawa T (2006) Absorption of photosynthetically active radiation, dry matter production, and light-use efficiency of terrestrial vegetation: a global model simulation. In: Kawahata H, Awaya Y (eds) Global Climate change and response of carbon cycle in the equatorial Pacific and Indian oceans and adjacent landmasses, vol 73. Elsevier, Amsterdam, pp 335–359

    Chapter  Google Scholar 

  • Ito A, Inatomi M, Mo W, Lee M, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2007) Examination of model-estimated ecosystem respiration by use of flux measurement data from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus 59B:616–624

    Google Scholar 

  • Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems; evidence from eddy covariance data. Glob Chang Biol 14:2333–2348

    Article  Google Scholar 

  • Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Chang Biol 12:1285–1298

    Article  Google Scholar 

  • Kira T (1991) Forest ecosystems of east and southeast Asia in a global perspective. Ecol Res 6:185–200

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Kitao M, Koike T, Tobita H, Maruyama Y (2005) Elevated CO2 and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (Betula platyphylla var. japoninca) leaves. Physiol Plant 125:64–73

    Article  CAS  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Gerten D, Le Maire G, Parton WJ, Weng E, Zhou X, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, Nepstad D, Rustad L (2008) Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob Chang Biol 14:1986–1999

    Article  Google Scholar 

  • McMurtrie RE, Wang Y-P (1993) Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant Cell Environ 16:1–13

    Article  CAS  Google Scholar 

  • Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M, Winguth AME (2007) Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim Dyn 28:599–633

    Article  Google Scholar 

  • Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Article  PubMed  Google Scholar 

  • Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broad-leaved forest: implications to the ecosystem carbon gain. Agric For Meteorol 134:39–59

    Article  Google Scholar 

  • Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meteorol 148:1136–1146

    Article  Google Scholar 

  • Norby RJ, Delucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans RD, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  CAS  PubMed  Google Scholar 

  • Ohtani Y, Saigusa N, Yamamoto S, Mizoguchi Y, Watanabe T, Yasuda Y, Murayama S (2005) Characteristics of CO2 fluxes in cool-temperate coniferous and deciduous broadleaf forests in Japan. Phyton 45:73–80

    CAS  Google Scholar 

  • Oikawa T (1986) Simulation of forest carbon dynamics based on dry-matter production model: 3. Effects of increasing CO2 upon a tropical rainforest ecosystem. Bot Mag 99:419–430

    Article  CAS  Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith M-L, KT PawU, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 105:19336–19341

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    Article  CAS  PubMed  Google Scholar 

  • Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148:700–713

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 21:GB4018. doi:10.1029/2006GB002868

    Article  CAS  Google Scholar 

  • Woodward FI, Thompson GB, McKee IF (1991) The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities and ecosystems. Ann Bot 67:23–38

    Google Scholar 

Download references

Acknowledgments

This study was partly supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 19310017) and from the Japan Ministry of Education, Culture, Sports, Science and Technology (no. 21114010). This is a contribution to the A3 Foresight Program “Quantifying and predicting terrestrial carbon sinks in East Asia: toward a network of climate change research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, A. Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model. J Plant Res 123, 577–588 (2010). https://doi.org/10.1007/s10265-009-0305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0305-x

Keywords

Navigation