Skip to main content
Log in

Changes in variance components of forest structure along a chronosequence in a wave-regenerated forest

  • Original Article
  • Published:
Ecological Research

Abstract

We explored structural mean and variation along a chronosequence in a wave-regenerated forest on Mt. Shimagare, Japan, and examined differences in the components of variation between developmental stages. Because there are several strips of stands at the same developmental stage in the forest, between- and within-strip variances (i.e., variance components) were analyzed at each stage. Three strips were selected for each of three developmental stages (one for saplings to three for mature trees), and four plots were established in each of the strips. Stem densities and stand basal areas for trees taller than 20 cm were computed for all plots. Six Bayesian ANOVA models were compared to examine the temporal patterns of stage means, total variance, and the variance components for the two stand structural parameters. The results of the model comparison suggested that the variation in stem densities decreased from the sapling stage to the mature stage, but variation in stand basal areas remained roughly constant throughout forest development. For both density and basal area, the relative magnitudes of each variance component compared to the total variance differed between stages; the ratios of between-strip variation to within-strip variation were highest at the mature stage. Our results suggest that forest structure exhibited higher variability during development of the wave-regenerated forest than was assumed in previous studies and that the variance components for the forest structure varied temporally among developmental stages. This study thus illustrated a potential application of the chronosequence approach to infer the dynamics of a spatially heterogeneous and hierarchically structured ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benedetti-Cecchi L (2003) The importance of the variance around the mean effect size of ecological processes. Ecology 84:2335–2346. doi:10.1890/02-8011

    Article  Google Scholar 

  • Brassard BW, Chen HYH (2006) Stand structural dynamics of North American boreal forests. Crit Rev Plant Sci 25:115–137. doi:10.1080/07352680500348857

    Article  Google Scholar 

  • Carleton TJ, Wannamaker BA (1987) Mortality and self-thinning in postfire black spruce. Ann Bot (Lond) 59:621–628

    Google Scholar 

  • Clark JS (2003) Uncertainty in ecological inference and forecasting. Ecology 84:1349–1350. doi:10.1890/0012-9658(2003)084[1349:UIEIAF]2.0.CO;2

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x

    Article  Google Scholar 

  • Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40. doi:10.1111/j.1365-2745.2006.01179.x

    Article  Google Scholar 

  • Cullinan VI, Simmons MA, Thomas JM (1997) A Bayesian test of hierarchy theory: scaling up variability in plant cover from field to remotely sensed data. Landscape Ecol 12:273–285. doi:10.1023/A:1007962415318

    Article  Google Scholar 

  • Drake DR, Mueller-Dombois D (1993) Population development of rain forest trees on a chronosequence of Hawaiian lava flows. Ecology 74:1012–1019. doi:10.2307/1940471

    Article  Google Scholar 

  • Foster BL, Tilman D (2000) Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecol 146:1–10. doi:10.1023/A:1009895103017

    Article  Google Scholar 

  • Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems (NY) 1:497–510. doi:10.1007/s100219900046

    Article  Google Scholar 

  • Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770. doi:10.1111/j.1461-0248.2008.01191.x

    Article  PubMed  Google Scholar 

  • Greenwood DL, Weisberg PJ (2008) Density-dependent tree mortality in pinyon-juniper woodlands. For Ecol Manage 255:2129–2137

    Article  Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401. doi:10.2307/3546645

    Article  Google Scholar 

  • Iwaki H, Totsuka T (1959) Ecological and physiological studies on the vegetation of Mt. Shimagare II. On the crescent-shaped “Dead trees strips” in the Yatsugatake and the Chichibu Mountains. Bot Mag Tokyo 72:413–420

    Google Scholar 

  • Iwasa Y, Sato K, Nakashima S (1991) Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J Theor Biol 152:143–158. doi:10.1016/S0022-5193(05)80448-5

    Article  Google Scholar 

  • Kashian DM, Turner MG, Romme WH, Lorimer CG (2005) Variability and convergence in stand structural development on a fire-dominated subalpine landscape. Ecology 86:643–654. doi:10.1890/03-0828

    Article  Google Scholar 

  • Kimura M (1982) Changes in population structure, productivity and dry matter allocation with the progress of wave regeneration of Abies stands in Japanese subalpine regions. In: Waring RH (ed) Carbon uptake and allocation in subalpine ecosystems as a key to management. Oregon State University, Oregon, pp 57–63

    Google Scholar 

  • Kohyama T (1982) Studies on the Abies population of Mt. Shimagare 2. Reproductive and life history traits. Bot Mag Tokyo 95:167–181. doi:10.1007/BF02488583

    Article  Google Scholar 

  • Kohyama T (1988) Etiology of “Shimagare” dieback and regeneration in subalpine Abies forests of Japan. GeoJournal 17:201–208. doi:10.1007/BF02432923

    Article  Google Scholar 

  • Kohyama T, Fujita N (1981) Studies on the Abies population of Mt. Shimagare 1. Survivorship curve. Bot Mag Tokyo 94:55–68. doi:10.1007/BF02490203

    Article  Google Scholar 

  • Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188

    Google Scholar 

  • Lecomte N, Simard M, Fenton N, Bergeron Y (2006) Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada. Ecosystems (NY) 9:1215–1230. doi:10.1007/s10021-004-0168-x

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967. doi:10.2307/1941447

    Article  Google Scholar 

  • Lutz JA, Halpern CB (2006) Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol Monogr 76:257–275. doi:10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2

    Article  Google Scholar 

  • McCarthy MA (2007) Bayesian methods for ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Mohler CL, Marks PL, Sprugel DG (1978) Stand structure and allometry of trees during self-thinning of pure stands. J Ecol 66:599–614. doi:10.2307/2259153

    Article  Google Scholar 

  • Nakashizuka T (1984) Regeneration process of crimax beech (Fagus crenata Brume) Forests V population dynamics of beech in a regeneration process. Jpn J Ecol 34:411–419

    Google Scholar 

  • O’Neill RV (1989) Perspectives in hierarchy and scale. In: Roughgarden J, May RM, Levin SA (eds) Perspectives in ecological theory. Princeton University Press, Princeton, pp 140–156

    Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Willey, New York

    Google Scholar 

  • Oshima Y, Kimura M, Iwaki H, Kuroiwa S (1958) Ecological and physiological studies on the vegetation of Mt. Shimagare. Bot Mag Tokyo 71:289–301

    Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer, Berlin Heidelberg New York, pp 110–135

    Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, San Diego

    Google Scholar 

  • Pinel-Alloul P (1995) Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300–301:17–42. doi:10.1007/BF00024445

    Article  Google Scholar 

  • Qian SS, Shen Z (2007) Ecological applications of multilevel analysis of variance. Ecology 88:2489–2495. doi:10.1890/06-2041.1

    Article  PubMed  Google Scholar 

  • R development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Sato T (1994) Stand structure and dynamics of wave-type Abies sachalinensis coastal forest. Ecol Res 9:77–84. doi:10.1007/BF02347244

    Article  Google Scholar 

  • Silvertown J, Dodd M (1999) The demographic cost of reproduction and its consequences in balsam fir (Abies balsamea). Am Nat 154:321–331. doi:10.1086/303238

    Article  PubMed  Google Scholar 

  • Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS 1.4 Manual. Imperial College and Medical Research Council, London

    Google Scholar 

  • Sprugel DG (1976) Dynamic structure of wave-regenerated Abies balsamea forests in the northeastern United States. J Ecol 64:889–911. doi:10.2307/2258815

    Article  Google Scholar 

  • Sprugel DG (1984) Density, biomass, productivity, and nutrient-cycling changes during stand development in wave-regenerated balsam fir forests. Ecol Monogr 54:165–186. doi:10.2307/1942660

    Article  CAS  Google Scholar 

  • Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1–16

    Google Scholar 

  • Tadaki Y, Sato A, Sakurai S, Takeuchi I, Kawahara T (1977) Studies on the production structure of forest. XVIII. Structure and primary production in subalpine “dead trees strips” Abies forest near Mt. Asahi. Jpn J Ecol 27:83–90

    Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems (NY) 1:511–523. doi:10.1007/s100219900047

    Article  Google Scholar 

  • Turner MG, Tinker DB, Romme WH, Kashian DM, Litton CM (2004) Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park (USA). Ecosystems (NY) 7:751–775. doi:10.1007/s10021-004-0011-4

    Article  Google Scholar 

  • Ugawa S, Iwamoto K, Fukuda K (2007) Coexistence of Abies mariesii and Abies veitchii in a subalpine fir-wave forest. Can J Res 37:2142–2152. doi:10.1139/X07-083

    Article  Google Scholar 

  • Ward EJ (2008) A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol Modell 211:1–10. doi:10.1016/j.ecolmodel.2007.10.030

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513. doi:10.1126/science.1098778

    Article  CAS  PubMed  Google Scholar 

  • White P (1979) Pattern, process, and disturbance in vegetation. Bot Rev 45:229–299. doi:10.1007/BF02860857

    Article  Google Scholar 

  • Wirth C, Schulze ED, Schulze W, von Stünzner-Karbe D, Ziegler W, Miljukova IM, Sogatchev A, Varlagin AB, Panvyorov M, Grigoriev S, Kusnetzova W, Siry M, Hardes G, Zimmermann R, Vygodskaya NN (1999) Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 121:66–80. doi:10.1007/s004420050908

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Nan-Shin District Forest Office for allowing us to conduct our study at the site. We are grateful to the stimulus discussions with Drs. Koichi Takahashi and Tatsuyuki Seino. Dr. Kenichirou Shimatanitni and an anonymous reviewer made critical comments. The members of the laboratories of Animal Ecology and Plant Ecology of Tokyo Metropolitan University helped us in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi N. Suzuki.

Appendix

Appendix

See appendix Table 4

Table 4 Structural characteristics of the stands sampled at the study site

About this article

Cite this article

Suzuki, S.N., Kachi, N. & Suzuki, JI. Changes in variance components of forest structure along a chronosequence in a wave-regenerated forest. Ecol Res 24, 1371–1379 (2009). https://doi.org/10.1007/s11284-009-0621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-009-0621-6

Keywords

Navigation