Skip to main content
Log in

Reconfigurable Intelligent Surfaces Aided Terahertz Communication for 6G: Challenges and Potential Solutions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently, reconfigurable intelligent surfaces (RIS) aided design has been introduced for next-generation wireless networks to enhance system performance. Further, Terahertz (THz) communication has emerged as a promising technology to provide ultra-wide bandwidth satisfying varieties of emerging applications in 6G. The article considers the integration of RIS with THz communication to improve the performance of the 6G network. RIS-aided THz system is utilized both active and passive beamforming at the transmitter (Tx) and RIS, respectively. We survey and highlight how RIS may impact the design of THz systems with the possible challenges and potential solutions. The phase optimization and channel estimation are discussed for the RIS-aided THz system. The impact of beamforming, hardware impairments, and signal propagation is considered. We comprehensively discuss the opportunities and challenges of RIS in THz future communication scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No standard data set and material are used in the paper.

Codes

The software codes generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gao, W., Chen, Y., Han, C., & Chen, Z. (2020). Distance-adaptive absorption peak modulation (DA-APM) for terahertz covert communications. IEEE Transactions on Wireless Communications, 20(3), 2064–2077.

    Article  Google Scholar 

  2. Sarieddeen, H., Saeed, N., Al-Naffouri, T. Y., & Alouini, M.-S. (2020). Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Communications Magazine, 58(5), 69–75.

    Article  Google Scholar 

  3. Tataria, H., Shafi, M., Dohler, M., & Sun, S. (2022). Six critical challenges for 6G wireless systems: A summary and some solutions. IEEE Vehicular Technology Magazine, 17(1), 16–26.

    Article  Google Scholar 

  4. Song, H.-J., & Lee, N. (2021). Terahertz communications: Challenges in the next decade. IEEE Transactions on Terahertz Science and Technology, 12(2), 105–117.

    Article  Google Scholar 

  5. Khalid, N., & Akan, O. B. (2016). Experimental throughput analysis of low-THz MIMO communication channel in 5G wireless networks. IEEE Wireless Communications Letters, 5(6), 616–619.

    Article  Google Scholar 

  6. Huang, C., Yang, Z., Alexandropoulos, G. C., Xiong, K., Wei, L., Yuen, C., Zhang, Z., & Debbah, M. (2021). Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design. IEEE Journal on Selected Areas in Communications, 39(6), 1663–1677.

    Article  Google Scholar 

  7. Yan, W., Hao, W., Huang, C., Sun, G., Muta, O., Gacanin, H., & Yuen, C. (2023). Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications. IEEE Journal on Selected Areas in Communications, 41(8), 2306–2320.

    Article  Google Scholar 

  8. Kumar, M. H., Sharma, S., Deka, K., & Bhatia, V. (2022). Intelligent reflecting surface assisted terahertz communications. In 2022 IEEE international conference on signal processing and communications (SPCOM) (pp. 1–5). IEEE.

  9. Su, R., Dai, L., & Ng, D. W. K. (2023). Wideband precoding for ris-aided thz communications. IEEE Transactions on Communications, 71(6), 3592–3604.

    Article  Google Scholar 

  10. He, J., Wymeersch, H., Di Renzo, M., & Juntti, M. (2022). Learning to estimate RIS-aided mmwave channels. IEEE Wireless Communications Letters.

  11. Mi, Y., & Song, Q. (2021). Energy efficiency maximization for IRS-aided WPCNs. IEEE Wireless Communications Letters, 10(10), 2304–2308.

    Article  Google Scholar 

  12. Hao, W., Sun, G., Zeng, M., Chu, Z., Zhu, Z., Dobre, O. A., & Xiao, P. (2021). Robust design for intelligent reflecting surface-assisted MIMO-OFDMA terahertz IoT networks. IEEE Internet of Things Journal, 8(16), 13052–13064.

    Article  Google Scholar 

  13. Kaur, M., & Yadav, R. K. (2022). EC analysis of multi-antenna system over 5G and beyond networks and its application to IRS-assisted wireless systems. Wireless Personal Communications, 124(2), 1861–1881.

    Article  Google Scholar 

  14. Su, X., He, R., Ai, B., Niu, Y., & Wang, G. (2024). Channel estimation for RIS assisted THz systems with beam split. IEEE Communications Letters, PP(PP), 1–5.

    Google Scholar 

  15. Skrimponis, P., Hosseinzadeh, N., Khalili, A., Erkip, E., Rodwell, M. J., Buckwalter, J. F., & Rangan, S. (2020). Towards energy efficient mobile wireless receivers above 100 GHz. IEEE Access, 9, 20704–20716.

    Article  Google Scholar 

  16. Andiappan, V., & Ponnusamy, V. (2022). Deep learning enhanced NOMA system: A survey on future scope and challenges. Wireless Personal Communications, 123(1), 839–877.

    Article  Google Scholar 

  17. Jornet, J. M., & Akyildiz, I. F. (2014). Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), 1742–1754.

    Article  Google Scholar 

  18. He, D., Wang, Z., Quek, T. Q., Chen, S., & Hanzo, L. (2021). Deep learning-assisted terahertz QPSK detection relying on single-bit quantization. IEEE Transactions on Communications, 69(12), 8175–8187.

    Article  Google Scholar 

  19. Chen, Y., Li, Y., Han, C., Yu, Z., & Wang, G. (2021). Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications. IEEE Transactions on Wireless Communications, 20(12), 8163–8176.

    Article  Google Scholar 

  20. Ye, J., Dang, S., Ma, G., Amin, O., Shihada, B., & Alouini, M.-S. (2021). On outage performance of terahertz wireless communication systems. IEEE Transactions on Communications, 70(1), 649–663.

    Article  Google Scholar 

  21. Eckhardt, J. M., & Doeker, T. (2024). Lessons learned from a decade of THz channel sounding. IEEE Communications Magazine, 62(2), 24–30.

    Article  Google Scholar 

  22. Lin, Y., Jin, S., Matthaiou, M., & You, X. (2021). Tensor-based algebraic channel estimation for hybrid IRS-assisted MIMO-OFDM. IEEE Transactions on Wireless Communications, 20(6), 3770–3784.

    Article  Google Scholar 

  23. Han, C., Wang, Y., Li, Y., Chen, Y., Abbasi, N. A., Kürner, T., & Molisch, A. F. (2022). Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis. IEEE Communications Surveys and Tutorials, 24(3), 1670–1707.

    Article  Google Scholar 

  24. Alhamad, R. I. (2022). Intelligent reflecting surfaces with adaptive transmit and energy harvesting for cognitive radio networks. Wireless Personal Communications, 1–15.

  25. Zhou, G., Pan, C., Ren, H., Wang, K., & Peng, Z. (2021). Secure wireless communication in RIS-aided MISO system with hardware impairments. IEEE Wireless Communications Letters, 10(6), 1309–1313.

    Article  Google Scholar 

  26. Sharma, S., Deka, K., Hong, Y., & Dixit, D. (2021). Intelligent reflecting surface-assisted uplink SCMA system. IEEE Communications Letters, 25(8), 2728–2732.

    Article  Google Scholar 

  27. Alhamad, R., & Boujemaa, H. (2022). Non orthogonal multiple access for millimeter wave communications using intelligent reflecting surfaces. Wireless Personal Communications, 122(3), 2621–2637.

    Article  Google Scholar 

  28. Singh, A., Sharma, S., Deka, K., & Bhatia, V. (2023). DL-based OTFS signal detection in presence of hardware impairments. IEEE Wireless Communications Letters, 12(9), 1533–1537.

    Article  Google Scholar 

  29. Sha, Z., & Wang, Z. (2021). Channel estimation and equalization for terahertz receiver with RF impairments. IEEE Journal on Selected Areas in Communications, 39(6), 1621–1635.

    Article  Google Scholar 

  30. Garg, K. K., Shaik, P., Bhatia, V., & Krejcar, O. (2022). On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation. Journal of Optical Communications and Networking, 14(4), 177–189.

    Article  Google Scholar 

  31. Sharma, S., Deka, K., & Bhatia, V. (2022). Intelligent reflecting surface-aided downlink SCMA. IEEE Systems Journal, 17(2), 3204–3211.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by DST Inria under the project `machine learning enabled next-generation IoT communications.

Funding

Funding support is not available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Sharma.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Deka, K. & Mishra, A. Reconfigurable Intelligent Surfaces Aided Terahertz Communication for 6G: Challenges and Potential Solutions. Wireless Pers Commun 134, 1827–1841 (2024). https://doi.org/10.1007/s11277-024-10985-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10985-9

Keywords

Navigation