Skip to main content

Advertisement

Log in

Deep Learning Enhanced NOMA System: A Survey on Future Scope and Challenges

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As a key important approach for next generation communication systems, Non-Orthogonal Multiple Access (NOMA) has made high attention in the wireless communication. NOMA allows users to transmit the information at same time and frequency to enhance the spectral efficiency compared to Orthogonal Multiple Access (OMA) techniques. Successive Interference Cancellation (SIC), channel estimation and power allocation are essentials for NOMA aided communication system. In recent times, Deep Learning (DL) has attraction towards solving problems in wireless communication; also it makes the system computationally simpler than the conventional system. In this paper we provide the recent research activities of Deep Learning aided NOMA system. Also we present the applications of Deep Learning in other wireless technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Chen, X., Liu, G., Ma, Z., Zhang, Xi., Weiqiang, Xu., & Fan, P. (2019). Optimal power allocations for non-orthogonal multiple access over 5g full/half-duplex relaying mobile wireless networks. IEEE Transactions on Wireless Communications, 18(1), 77–92.

    Article  Google Scholar 

  2. Y Saito, Y Kishiyama, A Benjebbour, T Nakamura, A Li, K Higuchi, (2013) Non-orthogonal multiple access (NOMA) for cellular future radio access. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, https://doi.org/10.1109/VTCSpring.2013.6692652, (pp. 1-5).

  3. Y Saito, A Benjebbour, Y Kishiyama, T Nakamura, (2013) System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, https://doi.org/10.1109/PIMRC.2013.6666209, (pp. 611-615).

  4. Cai, Y., Qin, Z., Cui, F., Li, G. Y., & McCann, J. A. (2018). Modulation and multiple access for 5G networks. IEEE Communications Surveys and Tutorials , 20(1), 629–646. https://doi.org/10.1109/COMST.2017.2766698

    Article  Google Scholar 

  5. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742. https://doi.org/10.1109/COMST.2016.2621116

    Article  Google Scholar 

  6. Su Xin, Yu HaiFeng, W Kim, C Choi, and Dongmin Choi, (2016) Interference cancellation for non-orthogonal multiple access used in future wireless mobile networks. EURASIP Journal on Wireless Communications and Networking 231: 529–551

  7. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. In IEICE Transactions on Communications, 98.5(3), 403–414.

    Article  Google Scholar 

  8. He Huang and Min Zhu. (2019). Energy efficiency maximization design for full-duplex cooperative NOMA systems with SWIPT. IEEE Access Special section on Advances in Signal Processing for Non Orthogonal Multiple Access, 7, 20442–20451.

    Google Scholar 

  9. Liu, Q., Lv, T., & Lin, Z. (2018). Energy efficient transmission design in cooperative relaying systems using NOMA. IEEE Communications Letters, 22(3), 594–598.

    Article  Google Scholar 

  10. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465. https://doi.org/10.1109/LCOMM.2015.2441064

    Article  Google Scholar 

  11. Liu, K. R. J., Sadak, A K., Su, W. and Kwasinski, A. (2009) Cooperative communication and Networking. www.cambridg.org.

  12. Hossain, E. Kim, D. I., and Bhargavan, V. K. (2011). Cooperative Cellular Wireless Networks. www.cambridge.org.

  13. Goodfellow I, Bengio Y, and Courville A, (2016) DL, MIT press, Cambridge, England.

  14. Khan, R., Jayakody, D N. K., Sharmay, V. Kumarz, V. Kaurx, K., and Chang, Z. (2019). A machine learning based energy-efficient non-orthogonal multiple access scheme. In http://earchive.tpu.ru/handle/11683/57475.

  15. Huang, H., et al. (2020). DL for physical-layer 5G wireless techniques: opportunities, challenges and solutions. IEEE Wireless Communications, 27(1), 214–222. https://doi.org/10.1109/MWC.2019.1900027

    Article  Google Scholar 

  16. Vaezi, M., Aruma Baduge, G. A., Liu, Y., Arafa, A., Fang, F., & Ding, Z. (2019). Interplay between NOMA and other emerging technologies: A survey. IEEE Transactions on Cognitive Communications and Networking, 5(4), 900–919. https://doi.org/10.1109/TCCN.2019.2933835

    Article  Google Scholar 

  17. Vaezi, M., Schober, R., Ding, Z., & Poor, H. V. (2019). Non-orthogonal multiple access: Common myths and critical questions. IEEE Wireless Communications, 26(5), 174–180. https://doi.org/10.1109/MWC.2019.1800598

    Article  Google Scholar 

  18. Hasan, M. K., Shahjalal, M. Islam, M. M., Alam, M. M., Ahmed, M. F. and Jang, Y. M. (2020). The role of DL in NOMA for 5G and beyond communications. In: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, https://doi.org/10.1109/ICAIIC48513.2020.9065219, (pp. 303–307).

  19. Hussain, F., Hassan, S. A., Hussain, R., & Hossain, E. (2020). Machine learning for resource management in cellular and IoT networks: Potentials, current solutions, and open challenges. IEEE Communications Surveys and Tutorials, 22(2), 1251–1275. https://doi.org/10.1109/COMST.2020.2964534

    Article  Google Scholar 

  20. Xu, Y., Yang, C., Hua, M., & Zhou, W. (2020). Deep deterministic policy gradient (DDPG)-based resource allocation scheme for NOMA vehicular communications. IEEE Access, 8, 18797–18807. https://doi.org/10.1109/ACCESS.2020.2968595

    Article  Google Scholar 

  21. Lin, R. et al (2019). DL based resource allocation in NOMA wireless power transfer networks, In: 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC) Beijing, China, https://doi.org/10.1109/CIEEC47146.2019.CIEEC-2019727, (pp. 2098 2103).

  22. Sun, Y., Wang, Y., Jiao, J., Wu, S., & Zhang, Q. (2019). DL-based long-term Power allocation scheme for NOMA downlink system in S-IoT. IEEE Access, 7, 86288–86296. https://doi.org/10.1109/ACCESS.2019.2926426

    Article  Google Scholar 

  23. Liu, M., Song, T., & Gui, G. (2019). Deep cognitive perspective: Resource allocation for NOMA-based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6(2), 2885–2894. https://doi.org/10.1109/JIOT.2018.2876152

    Article  Google Scholar 

  24. Tseng, S., Chen, Y., Tsai, C., & Tsai, W. (2019). Deep-learning-aided cross-layer resource allocation of OFDMA/NOMA video communication systems. IEEE Access, 7, 157730–157740. https://doi.org/10.1109/ACCESS.2019.2950127

    Article  Google Scholar 

  25. Abbas, R., Huang, T., & Shahab, B. (2020). Grant free non orthogonal multiple access a key enabler for 6G IoT. ArXiv Preprint arXiv, 2003, 10257.

    Google Scholar 

  26. Yang, N., Zhang, H., Long, K., Hsieh, H., & Liu, J. (2020). Deep neural network for resource management in NOMA networks. IEEE Transactions on Vehicular Technology, 69(1), 876–886. https://doi.org/10.1109/TVT.2019.2951822

    Article  Google Scholar 

  27. Khairy, S. Balaprakash, P. Cai, LX. Chengr, Y. (2020). Constrained deep reinforcement learning for energy sustainable multi-UAV based random access IoT networks with NOMA. ArXiv Preprint ArXiv 39: 4 1101 1115

  28. Yang, Z Liu, Y Chen, Y Al-Dhahir, N (2019). Cache-aided noma mobile edge computing: A reinforcement learning approach. ArXiv preprint ArXiv 1906. 08812

  29. Saetan W, and Thipchaksurat, S (2019). Power allocation for sum rate maximization in 5G NOMA system with imperfect SIC: A DL approach, In: 2019 4th International Conference on Information Technology (InCIT), Bangkok, Thailand, doi: https://doi.org/10.1109/INCIT.2019.8911864,(pp. 195–198).

  30. Doan, K. N., Vaezi, M., Shin, W., Poor, H. V., Shin, H., & Quek, T. Q. S. (2020). Power allocation in cache-aided NOMA systems: Optimization and deep reinforcement learning approaches. IEEE Transactions on Communications, 68(1), 630–644. https://doi.org/10.1109/TCOMM.2019.2947418

    Article  Google Scholar 

  31. Jang, H. S., Lee, H., & Quek, T. Q. S. (2019). DL-based power control for non-orthogonal random access. IEEE Communications Letters, 23(11), 2004–2007. https://doi.org/10.1109/LCOMM.2019.2936473

    Article  Google Scholar 

  32. Xiao, L., Li, Y., Dai, C., Dai, H., & Poor, H. V. (2018). Reinforcement learning-based NOMA power allocation in the presence of smart jamming. IEEE Transactions on Vehicular Technology, 67(4), 3377–3389. https://doi.org/10.1109/TVT.2017.2782726

    Article  Google Scholar 

  33. Luo, J., Tang, J., So, D. K. C., Chen, G., & Cumanan, K. (2019). A DL-based approach to power minimization in multi-carrier NOMA with SWIPT. IEEE Access Special section on Advances in Signal IEEE Wireless Communications Processing for Non Orthogonal Multiple Access, 7, 17450–17460.

    Google Scholar 

  34. Zhou, Q., Yao, S., Shen, S., Chen, Y. W., He, J., & Chang, G. K. (2019). Efficient power-division NOMA for intelligent optical access network enabled by deep learning. In: 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM), Ft. Lauderdale, FL, USA. IEEE. https://doi.org/10.1109/PHOSST.2019.8794915, (pp. 1-2).

  35. Wang, X., Zhang, Y., Shen, R., Xu, Y., & Zheng, F. (2020). DRL-based energy-efficient resource Allocation frameworks for uplink NOMA systems. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.2982699

    Article  Google Scholar 

  36. Zhang, Z., Zhai, D., Zhang, R., Tang, X., & Wang, Y. (2019). A convolutional neural network based resource management algorithm for NOMA enhanced D2D and cellular hybrid networks. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China. https://doi.org/10.1109/WCSP.2019.8928033, (pp. 1–6).

  37. He, C., Hu, Y., Chen, Y., & Zeng, B. (2019). Joint power allocation and channel assignment for NOMA with deep reinforcement learning. IEEE Journal on Selected Areas in Communications, 37(10), 2200–2210. https://doi.org/10.1109/JSAC.2019.2933762

    Article  Google Scholar 

  38. Ma M, Wong, VWS (2020) Joint user pairing and association for multicell NOMA a pointer network-based approach. ArXiv preprint ArXiv 2004: 07395

  39. Wang, S., Lv, T., and Zhang, X. (2019) Multi-agent reinforcement learning-based user pairing in multi-carrier NOMA systems. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), IEEE.https://doi.org/10.1109/ICCW.2019.8757016, (pp. 1-6).

  40. Lei, L., You, L., He, Q., Vu, T. X., & Chatzinotas, S. (2019). Learning-assisted optimization for energy-efficient scheduling in deadline-aware NOMA systems. IEEE Transactions on Green Communications and Networking, 3(3), 615–627. https://doi.org/10.1109/TGCN.2019.2902838

    Article  Google Scholar 

  41. Huang, R., Wong, V. W., and Schober, R. (2019) Throughput optimization in grant-free NOMA with deep reinforcement learning. In: 2019 IEEE Global Communications Conference (GLOBECOM), IEEE. https://doi.org/10.1109/GLOBECOM38437.2019.9013451, (pp. 1-6)

  42. Cui, J., Ding, Z., Fan, P., & Al-Dhahir, N. (2018). Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems. IEEE Transactions on Wireless Communications, 17(11), 7425–7440. https://doi.org/10.1109/TWC.2018.2867180

    Article  Google Scholar 

  43. Tang, J., Luo, J., Ou, J., Zhang, X., Zhao, N., So, D. K. C., & Wong, K. K. (2020). Decoupling or learning: Joint power splitting and allocation in MC-NOMA with SWIPT. IEEE Transactions on Communications, 68(9), 5834–5848. https://doi.org/10.1109/TCOMM.2020.2998858

    Article  Google Scholar 

  44. Zhang, J., Tao, X., Wu, H., Zhang, N., & Zhang, X. (2020). Deep reinforcement learning for throughput improvement of uplink grant-free NOMA system. IEEE Internet of Things Journal, 7(7), 6369–6379. https://doi.org/10.1109/JIOT.2020.2972274

    Article  Google Scholar 

  45. Alberge, F. (2018). Constellation design with DL for downlink non-orthogonal multiple access. In: IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna. https://doi.org/10.1109/PIMRC.2018.8580937, (pp. 1–5).

  46. Ye, N., Li, X., Yu, H., Zhao, L., Liu, W., & Hou, X. (2020). DeepNOMA: A unified framework for NOMA using deep multi-task learning. IEEE Transactions on Wireless Communications, 19(4), 2208–2225. https://doi.org/10.1109/TWC.2019.2963185

    Article  Google Scholar 

  47. Thompson, J. (2019). Deep learning for signal detection in non-orthogonal multiple access wireless systems. In: 2019 UK/China Emerging Technologies (UCET) IEEE. https://doi.org/10.1109/UCET.2019.8881888, (pp. 1-4).

  48. Kang, J. Kim, I. and Chun, C. DL-based MIMO-NOMA with imperfect SIC decoding, IEEE Systems Journal, https://doi.org/10.1109/JSYST.2019.293746.

  49. Xie, W. Xiao, J. Yang, J. Peng, X. Yu, C. and Zhu, P. (2020). DL-based Modulation Detection for NOMA Systems. ArXiv preprint arXiv 2005: 11684

  50. Kim, W., Ahn, Y., & Shim, B. (2020). Deep neural network-based active user detection for grant-free NOMA systems. IEEE Transactions on Communications, 68(4), 2143–2155. https://doi.org/10.1109/TCOMM.2020.2969184

    Article  Google Scholar 

  51. Jiang, L., Li, X., Ye, N., & Wang, A. (2019). Deep learning-aided constellation design for downlink NOMA. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) , IEEE. https://doi.org/10.1109/IWCMC.2019.8766718, (pp. 1879-1883).

  52. Miao, X., Guo, D., & Li, X. (2020). Grant-free NOMA with device activity learning using long short-term memory. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2020.2976992

    Article  Google Scholar 

  53. Lin, C., Chang, Q., & Li, X. (2019). A DL approach for MIMO-NOMA downlink signal detection. Sensors, 19(11), 2526.

    Article  Google Scholar 

  54. Pan, J., Ye, N., Wang, A., & Lip, X. (2020). A DL-aided detection method for FTN-based NOMA. Wireless Communications and Mobile computing. https://doi.org/10.1155/2020/5684851

    Article  Google Scholar 

  55. Gui, G., Huang, H., Song, Y., & Sari, H. (2018). DL for an effective nonorthogonal multiple access scheme. IEEE Transactions on Vehicular Technology, 67(9), 8440–8450. https://doi.org/10.1109/TVT.2018.2848294

    Article  Google Scholar 

  56. AbdelMoniem, M., Gasser, S. M., El-Mahallawy, M. S. F., Soliman, M. W., & A. . (2019). Enhanced NOMA system using adaptive coding and modulation based on LSTM neural network channel estimation. Applied Science, 9(15), 3022.

    Article  Google Scholar 

  57. Li, C., Gao, Z., Xia, J., et al. (2020). Cache-enabled physical-layer secure game against smart uAV-assisted attacks in b5G NOMA networks. Journal Wireless Communications and Network. https://doi.org/10.1186/s13638-019-1595-x

    Article  Google Scholar 

  58. Yang, P., Li, L., Liang, W., Zhang, H., & Ding, Z. (2019). Latency optimization for multi-user NOMA-MEC offloading using reinforcement learning. In: 2019 28th Wireless and Optical Communications Conference (WOCC), IEEE. https://doi.org/10.1109/WOCC.2019.8770605, (pp. 1-5).

  59. Emir, A. Kara, F. Kaya, H. (2020) Pilot interval reduction by DL based detectors in uplink NOMA. ArXiv preprint ArXiv, 2004. 12416

  60. Sun, H. Ma, X. Hu, RQ. (2020) Adaptive federated learning with gradient compression in uplink NOMA. ArXiv preprint ArXiv, 2003. 01344

  61. Fu, Y., Wen, W., Zhao, Z., Quek, T. Q. S., Jin, S., & Zheng, F. (2019). Dynamic power control for NOMA transmissions in wireless caching networks. IEEE Wireless Communications Letters, 8(5), 1485–1488. https://doi.org/10.1109/LWC.2019.2923410

    Article  Google Scholar 

  62. Nduwayezu, M., Pham, Q., & Hwang, W. (2020). Online computation offloading in NOMA-based multi-access edge computing: A deep reinforcement learning approach. IEEE Access, 8, 99098–99109. https://doi.org/10.1109/ACCESS.2020.2997925

    Article  Google Scholar 

  63. Kim, M., Kim, N., Lee, W., & Cho, D. (2018). DL-aided SCMA. IEEE Communications Letters, 22(4), 720–723. https://doi.org/10.1109/LCOMM.2018.2792019

    Article  Google Scholar 

  64. Huang, H., Gui, G., Sari, H., & Adachi, F. (2018). Deep learning for super-resolution DOA estimation in massive MIMO systems. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), IEEE. https://doi.org/10.1109/VTCFall.2018.8691023, (pp. 1-5).

  65. Huang, H., Song, Y., Yang, J., Gui, G., & Adachi, F. (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032. https://doi.org/10.1109/TVT.2019.2893928

    Article  Google Scholar 

  66. Xia, J., He, K., Xu, W., Zhang, S., Fan, L., & Karagiannidis, G. K. (2020). A MIMO detector with DL in the presence of correlated interference. IEEE Transactions on Vehicular Technology, 69(4), 4492–4497. https://doi.org/10.1109/TVT.2020.2972806

    Article  Google Scholar 

  67. Sharma, S., & Hong, Y. (2021). A hybrid multiple access scheme via DL-based detection. IEEE Systems Journal, 15(1), 981–984. https://doi.org/10.1109/JSYST.2020.2975666

    Article  Google Scholar 

  68. Lin, J., Feng, S., Zhang, Y., Yang, Z., & Zhang, Y. (2019). A novel deep neural network based approach for sparse code multiple access. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.11.066

    Article  Google Scholar 

  69. Wang, Y., Wang, J., Zhang, W., Yang, J., & Gui, G. (2020). DL-based cooperative automatic modulation classification method for MIMO systems. IEEE Transactions on Vehicular Technology, 69(4), 4575–4579. https://doi.org/10.1109/TVT.2020.2976942

    Article  Google Scholar 

  70. Wang, Y., Yang, J., Liu, M., & Gui, G. (2020). LightAMC: Lightweight automatic modulation classification via DL and compressive sensing. IEEE Transactions on Vehicular Technology, 69(3), 3491–3495. https://doi.org/10.1109/TVT.2020.2971001

    Article  Google Scholar 

  71. Mao, B., et al. (2018). A novel non-supervised deep-learning-based network traffic control method for software defined wireless. Networks, 25(4), 74–81. https://doi.org/10.1109/MWC.2018.1700417

    Article  Google Scholar 

  72. Liao, R. F., Wen, H., Wu, J., Song, H., & Pan, F. (2018). The Rayleigh fading channel prediction via DL. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/6497340

    Article  Google Scholar 

  73. Yang, Y., Gao, F., Ma, X., & Zhang, S. (2019). DL-based channel estimation for doubly selective fading channels. IEEE Access, 7, 36579–36589. https://doi.org/10.1109/ACCESS.2019.2901066

    Article  Google Scholar 

  74. Taha, A. Alrabeiah, M. Alkhateeb, A. (2019) Enabling large intelligent surfaces with compressive sensing and DL. ArXiv preprint ArXiv 1904. 10136

  75. Wu, T. M. (2006). Generation of Nakagami-m fading channels. In: 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Vic, IEEE. https://doi.org/10.1109/VETECS.2006.1683376, (pp. 2787-2792).

  76. Assaf, T., Al-Dweik, A., Moursi, M. E., & Zeineldin, H. (2019). Exact BER performance analysis for downlink NOMA systems over Nakagami- m fading channels. IEEE Access, 7, 134539–134555. https://doi.org/10.1109/ACCESS.2019.2942113

    Article  Google Scholar 

  77. Sajjad, H. Jamil, M. (2012). Error rate performance of multi-hop communication systems over Nakagami-m fading channel. In diva-portal.org.

  78. Nguyen, B. C., Hoang T. M., and Tran, T. P., (2018). Performance analysis of full-duplex decode-and-forward relay system with energy harvesting over Nakagami-m fading channels. Elsevier International Journal of Electronics and Communications, (pp. 114–122).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakumar Ponnusamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andiappan, V., Ponnusamy, V. Deep Learning Enhanced NOMA System: A Survey on Future Scope and Challenges. Wireless Pers Commun 123, 839–877 (2022). https://doi.org/10.1007/s11277-021-09160-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09160-1

Keywords

Navigation