Skip to main content

Advertisement

Log in

A Comprehensive Review on NOMA Assisted Emerging Techniques in 5G and Beyond 5G Wireless Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A promising technique for increasing the number of users in a wireless network is Non-Orthogonal Multiple Access (NOMA) which improves the spectral efficiency and unfairness in communication by using same wireless resource to more than one user. The wireless technologies such as millimeter wave communication, physical layer security, grant free communication, massive Multiple Input Multiple Output communication, and visible light communication are combined with NOMA flexibly to increase energy efficiency, scalability, and spectral efficiency to enhance the performance of future wireless communication network. In this paper, we provide a comprehensive review and detailed description on combination of NOMA with existing 5G and beyond 5G wireless techniques. The benefits of these techniques when combined with NOMA are described to identify the supremacy of the NOMA with 5G wireless systems. Moreover, we also describe the existing challenges faced during combination of NOMA with 5G and beyond 5G and future research directions are also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE communications Surveys & Tutorials, 20(3), 2294–2323.

    Article  Google Scholar 

  2. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.

    Article  Google Scholar 

  3. Vaezi, M., Baduge, G. A. A., Liu, Y., Arafa, A., Fang, F., & Ding, Z. (2019). Interplay between NOMA and other emerging technologies: A survey. IEEE Transactions on Cognitive Communications and Networking, 5(4), 900–919.

    Article  Google Scholar 

  4. Ding, Z., Fan, P., & Poor, H. V. (2015). Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.

    Article  Google Scholar 

  5. Judson, D., & Ascar, D. X. (2022). Code-hopping-based communication network using orthogonal complementary codes for advanced metering infrastructure in smart grid. Lecture Notes in Electrical Engineering, Futuristic Communication and Network Technologies. https://doi.org/10.1007/978-981-16-4625-6_102.

  6. Judson, D., & Bhaskar, V. (2018). Interference cancellation in CDMA systems employing complementary codes under Rician fading channels. Wireless Personal Communications, 101(2), 897–914.

    Article  Google Scholar 

  7. Judson, D., Bhaskar, V., & Arun, S. (2019). Space time regularized zero forcing in downlink code division multiple access systems with complementary codes. Wireless Personal Communications, 109(1), 333–347.

    Article  Google Scholar 

  8. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013) Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1–5.

  9. Ding, Z., Adachi, F., & Poor, H. V. (2015). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.

    Article  Google Scholar 

  10. Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview. Wireless Networks, 26(1), 181–203.

    Article  Google Scholar 

  11. Mohammadkarimi, M., Raza, M. A., & Dobre, O. A. (2018). Signature-based nonorthogonal massive multiple access for future wireless networks: Uplink massive connectivity for machine-type communications. IEEE vehicular technology magazine, 13(4), 40–50.

    Article  Google Scholar 

  12. Arun Prem Santh, J., Judson, D., Selvaraj, K., & Bhaskar, V. (2022). Improved PAPR Reduction using Gamma correction in SC-FDMA Systems under Multipath Fading Channels. Wireless Personal Communication. https://doi.org/10.1007/s11277-022-09690-2

    Article  Google Scholar 

  13. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22(10), 1647–1651.

    Article  Google Scholar 

  14. Wong, V. W., Schober, R., Ng, D. W. K., & Wang, L.-C. (2017). Key technologies for 5G wireless systems. Cambridge University Press.

    Book  Google Scholar 

  15. Starwin, M., Judson, D., & Selvaraj, K. (2022). Error rate analysis of uplink MC-CDMA systems using complementary codes in Rayleigh fading channels. Wireless Personal Communication, 123, 69–83.

    Article  Google Scholar 

  16. Davix, X. A., & Judson, D. (2019). Successive interference cancellation in asynchronous CC-CDMA systems under Rician fading channels. Telecommunication Systems, 72(2), 261–271.

    Article  Google Scholar 

  17. Wei, F., Chen, W., Wu, Y., Li, J., & Luo, Y. (2018). Toward 5G wireless interface technology: Enabling nonorthogonal multiple access in the sparse code domain. IEEE Vehicular Technology Magazine, 13(4), 18–27.

    Article  Google Scholar 

  18. Ding, Z., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  19. Vaezi, M., Schober, R., Ding, Z., & Poor, H. V. (2019). Non-orthogonal multiple access: Common myths and critical questions. IEEE Wireless Communications, 26(5), 174–180.

    Article  Google Scholar 

  20. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Nonorthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.

    Article  Google Scholar 

  21. Lv, L., Chen, J., Ni, Q., & Ding, Z. (2017). Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: User scheduling and performance analysis. IEEE Transactions on Communications, 65(6), 2641–2656.

    Article  Google Scholar 

  22. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2017). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575.

    Article  Google Scholar 

  23. Kara, F., & Kaya, H. (2018). On the error performance of cooperative-NOMA with statistical CSIT. IEEE Communications Letters, 23(1), 128–131.

    Article  Google Scholar 

  24. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  25. Judson, D., & Bhaskar, V. (2018). Error rate analysis of SIMO-CDMA with complementary codes under multipath fading channels. Wireless Personal Communication, 98(2), 1663–1677.

    Article  Google Scholar 

  26. ElHalawany B. M., Ruby R., Riihonen T., and Wu K. (2018) Performance of cooperative NOMA systems under passive eavesdropping. In 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.

  27. Ulukus, S., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.

    Article  Google Scholar 

  28. Shahab, M. B., Abbas, R., Shirvanimoghaddam, M., & Johnson, S. J. (2020). Grant-free non-orthogonal multiple access for IoT: A survey. IEEE Communications Surveys & Tutorials, 22(3), 1805–1838.

    Article  Google Scholar 

  29. N. Huda Mahmood, R. Abreu, R. Böhnke, M. Schubert, G. Berardinelli, and T. H. Jacobsen, “Uplink Grant-Free Random Access Solutions for URLLC services in 5G New Radio,” arXiv e-prints, p. arXiv-1904, 2019.

  30. Choi, J., Ding, J., Le, N. P., & Ding, Z. (2020) Grant-free random access in machine-type communication: Approaches and challenges, arXiv preprint arXiv:2012.10550.

  31. Jiang, H., Cui, Q., Gu, Y., Qin, X., Zhang, X., & Tao, X. (2018) Distributed layered grant-free non-orthogonal multiple access for massive MTC. In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2018, pp. 1–7.

  32. Cui, J., Ding, Z., & Fan, P. (2018) The application of machine learning in mmWave-NOMA systems. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 2018, pp. 1–6.

  33. Khan, R., Jayakody, D. N. K., Sharma, V., Kumar, V., Kaur, K., & Chang, Z. (2019) A Machine learning based energy-efficient non-orthogonal multiple access scheme. In 14th International Forum on Strategic Technology (IFOST-2019), October 14–17, 2019, Tomsk, Russia:[proceedings].—Tomsk, 2019., 2019, pp. 330–335

  34. Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  35. Edfors, O., & Tufvesson, F. (2015). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Google Scholar 

  36. Ding, Z., & Poor, H. V. (2016). Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Processing Letters, 23(5), 629–633.

    Article  Google Scholar 

  37. Senel, K., Cheng, H. V., Björnson, E., & Larsson, E. G. (2019). What role can NOMA play in massive MIMO? IEEE Journal of Selected Topics in Signal Processing, 13(3), 597–611.

    Article  Google Scholar 

  38. Zeng, M., Nguyen, N.-P., Dobre, O. A., & Poor, H. V. (2019). Securing downlink massive MIMO-NOMA networks with artificial noise. IEEE Journal of Selected Topics in Signal Processing, 13(3), 685–699.

    Article  Google Scholar 

  39. Nguyen, N.-P., Ngo, H. Q., Duong, T. Q., Tuan, H. D., & Tourki, K. (2018). Secure massive MIMO with the artificial noise-aided downlink training. IEEE Journal on Selected Areas in Communications, 36(4), 802–816.

    Article  Google Scholar 

  40. Liu, X., & Wang, X. (2016) Efficient antenna selection and user scheduling in 5G massive MIMO-NOMA system. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.

  41. Selvaraj, K., Judson, D., Ganeshkumar, P., & Anandaraj, M. (2020). Low complexity linear detection for uplink multiuser MIMO SC-FDMA systems. Wireless Personal Communications, 112(1), 631–649. https://doi.org/10.1007/s11277-020-07065-z

    Article  Google Scholar 

  42. Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.

    Article  Google Scholar 

  43. Cui, J., Ding, Z., Fan, P., & Al-Dhahir, N. (2018). Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems. IEEE Transactions on Wireless Communications, 17(11), 7425–7440.

    Article  Google Scholar 

  44. Di, B., Song, L., & Li, Y. (2016). Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Transactions on Wireless Communications, 15(11), 7686–7698.

    Article  Google Scholar 

  45. Zeng, Y., Lyu, J., & Zhang, R. (2018). Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wireless Communications, 26(1), 120–127.

    Article  Google Scholar 

  46. Islam, S. R., Zeng, M., Dobre, O. A., & Kwak, K.-S. (2018). Resource allocation for downlink NOMA systems: Key techniques and open issues. IEEE Wireless Communications, 25(2), 40–47.

    Article  Google Scholar 

  47. Cao, X., Wang, F., Xu, J., Zhang, R., & Cui, S. (2018). Joint computation and communication cooperation for energy-efficient mobile edge computing. IEEE Internet of Things Journal, 6(3), 4188–4200.

    Article  Google Scholar 

  48. Wang, F., Xu, J., Wang, X., & Cui, S. (2017). Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless Communications, 17(3), 1784–1797.

    Article  Google Scholar 

  49. Bi, S., & Zhang, Y. J. (2018). Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Transactions on Wireless Communications, 17(6), 4177–4190.

    Article  Google Scholar 

  50. Liu, Y., Chen, H.-H., & Wang, L. (2016). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys & Tutorials, 19(1), 347–376.

    Article  Google Scholar 

  51. Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Di Renzo, M. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.

    Article  Google Scholar 

  52. Selvaraj, K., Anandaraj, M., Judson, D., et al. (2022). A low complexity near optimal signal detection for large scale MIMO SC-FDMA uplink system. Wireless Personal Communication. https://doi.org/10.1007/s11277-022-09742-7

    Article  Google Scholar 

  53. Sun, L., & Du, Q. (2017). Physical layer security with its applications in 5G networks: A review. China Communications, 14(12), 1–14.

    Article  Google Scholar 

  54. Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.

    Article  Google Scholar 

  55. Zhang, X., Gao, Q., Gong, C., & Xu, Z. (2016). User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Communications Letters, 21(4), 777–780.

    Article  Google Scholar 

  56. Marshoud, H., Kapinas, V. M., Karagiannidis, G. K., & Muhaidat, S. (2015). Non-orthogonal multiple access for visible light communications. IEEE Photonics Technology Letters, 28(1), 51–54.

    Article  Google Scholar 

  57. Liu, X., Chen, Z., Wang, Y., Zhou, F., Luo, Y., & Hu, R. Q. (2019). BER analysis of NOMA-enabled visible light communication systems with different modulations. IEEE Transactions on Vehicular Technology, 68(11), 10807–10821.

    Article  Google Scholar 

  58. Xu, X., & Tao, M. (2017). Modeling, analysis, and optimization of coded caching in small-cell networks. IEEE Transactions on Communications, 65(8), 3415–3428.

    Google Scholar 

  59. Ji, M., Caire, G., & Molisch, A. F. (2015). Fundamental limits of caching in wireless D2D networks. IEEE Transactions on Information Theory, 62(2), 849–869.

    Article  MathSciNet  MATH  Google Scholar 

  60. Ding, Z., Fan, P., Karagiannidis, G. K., Schober, R., & Poor, H. V. (2018). NOMA assisted wireless caching: Strategies and performance analysis. IEEE Transactions on Communications, 66(10), 4854–4876.

    Article  Google Scholar 

  61. Merin Joshiba, J., Judson, D., & Albert Raj, A. (2022). 5G Modulation techniques—A systematic literature survey. In A. Sivasubramanian, P. N. Shastry, & P. C. Hong (Eds.), Futuristic Communication and Network Technologies (pp. 351–372). Springer Nature. https://doi.org/10.1007/978-981-16-4625-6_35

    Chapter  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Judson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merin Joshiba, J., Judson, D. & Bhaskar, V. A Comprehensive Review on NOMA Assisted Emerging Techniques in 5G and Beyond 5G Wireless Systems. Wireless Pers Commun 130, 2385–2405 (2023). https://doi.org/10.1007/s11277-023-10384-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10384-6

Keywords

Navigation