Skip to main content
Log in

Interference Cancellation in CDMA Systems Employing Complementary Codes Under Rician Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The ideal correlation properties of single user code division multiple access (CDMA) systems with complementary codes (CC) are lost by multiple access interference and near–far effects in downlink frequency selective fading channels. This severity in interference has motivated to develop ways to overcome the threats with suitable suboptimal interference cancellation schemes. In this paper, we propose successive interference cancellation (SIC) for downlink CDMA systems with CC to improve the system capacity and reduce error rate under near–far situations. Theoretical study and extensive simulations were conducted to verify the effectiveness of proposed SIC under frequency selective Rician fading channels in achieving frequency diversity gain, close to theoretical lower bound in complementary coded CDMA (CC-CDMA) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sari, H., Karam, G., & Jeanclaude, I. (1995). Transmission techniques for digital terrestrial TV broadcasting. IEEE Communication Magazine, 33(2), 100–109.

    Article  Google Scholar 

  2. Tseng, C. C., & Liu, C. L. (1995). Complementary sets of sequences. IEEE Wireless Communications, 18(5), 644–652.

    MathSciNet  MATH  Google Scholar 

  3. Golay, M. J. E. (1961). Complementary series. IRE Transactions on Information theory, 72(2), 82–87.

    Article  MathSciNet  Google Scholar 

  4. Chen, H. H., Yeh, J. F., & Suehiro, N. (2001). A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Communication Magazine, 39(10), 126–135.

    Article  Google Scholar 

  5. Chen, H. H., Chiu, H. W., & Guizani, M. (2006). Orthogonal complementary codes for interference free CDMA technologies. IEEE Wireless Communications, 13(1), 68–79.

    Article  Google Scholar 

  6. Chen, H. H. (2007). The next generation CDMA technologies. Hoboken: Wiley.

    Book  Google Scholar 

  7. Chen, H. H., Chu, S. W., Kuroyanagi, N., & Vinck, A. J. H. (2007). An algebraic approach to generate a superset of perfect complementary codes for interference-free CDMA. Wireless Communications and Mobile Computing, 7(5), 605–622.

    Article  Google Scholar 

  8. Meng, W. H., Sun, S. Y., & Chen, H. H. (2013). Multiuser interference cancellation in complementary coded CDMA with diversity gain. IEEE Wireless Communication Letters, 2(3), 303–306.

    Article  Google Scholar 

  9. Liu, Z., Guan, Y. Z., & Chen, H. H. (2015). Fractional delay resilient receiver design for interference free MC-CDMA communication based on complete complementary codes. IEEE Transactions on Wireless Communications, 4(3), 1226–1236.

    Article  Google Scholar 

  10. Mohammed, M., & Buehrer, M. (2008). The effects of ordering criteria in linear successive interference cancellation in CDMA system. IEEE Transaction on Wireless Communications, 7(11), 4128–4132.

    Article  Google Scholar 

  11. Judson, D., & Albert Raj, A. (2016). Performance of multicarrier complementary-coded CDMA under frequency-selective Nakagami-m fading channels. Eurasip Journal on Wireless Communications & Networking. https://doi.org/10.1186/s13638-016-0563-y.

    Google Scholar 

  12. Sun, S. Y., Hu, Y. L., Chen, H. H., & Meng, W. X. (2016). Joint pre-equalization and adaptive combining for CC-CDMA systems over asynchronous frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 65(7), 5175–5184.

    Article  Google Scholar 

  13. Judson, D., & Bhaskar, V. (2017). Error rate analysis of SIMO-CDMA with complementary codes under multipath fading channels. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4938-0.

    Google Scholar 

  14. Benvenuto, N., & Bisaglia, P. (2003). Parallel and successive interference cancellation for MC-CDMA and their near–far resistance. In Proceedings of IEEE Vehicular Technology Conference, pp. 1045–1049.

  15. Fang, L., & Milstein, L. B. (2000). Successive interference cancellation for multicarrier DS/CDMA. IEEE Transactions on Communications, 48(9), 1530–1540.

    Article  Google Scholar 

  16. Miridakis, N. I., & Vergados, D. D. (2013). A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE Communications Surveys and Tutorials, 15(1), 312–335.

    Article  Google Scholar 

  17. Andrews, J., & Meng, T. (2003). Optimum power control for successive interference cancellation with imperfect channel estimation. IEEE Transactions on Wireless Communications, 2(3), 375–383.

    Article  Google Scholar 

  18. Hossein-Abed, H. M., Nezambadi-Pour, H., Moghadam, D. A., & Khademi, M. (2013). Joint detection, channel estimation and interference cancellation in downlink MC-CDMA communication systems using complex-valued multilayer neural networks. Annals of Telecommunications, 68(7), 467–476.

    Article  Google Scholar 

  19. Proakis, J. G. (2001). Digital communication (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  20. Judson, D., Bhaskar, V., & Selvaraj, K. (2017). Pre-equalization schemes for MIMO CC-CDMA systems over frequency-selective fading channels. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4936-2.

    Google Scholar 

  21. Chen, H. H., & Chiu, H. W. (2004). Design of perfect complementary codes to implement interference-free CDMA systems. Proceedings of IEEE GLOBECOM, 2, 1096–1100.

    Google Scholar 

  22. Verdu, S. (1998). Multiuser detection. UK: Cambridge University Press.

    MATH  Google Scholar 

  23. Madkour, M. F., Gupta, S. C., & Wang, Y. P. E. (2002). Successive interference cancellation algorithms for downlink W-CDMA communication. IEEE Transactions on Wireless Communications, 11(1), 169–177.

    Article  Google Scholar 

  24. Saxena, J., Rai, C. S., & Bansal, P. K. (2007). Near–far resistant ICA based detector for DS-CDMA systems in the downlink. Wireless Personal Communications, 43(2), 341–353.

    Article  Google Scholar 

  25. Wang, C., Au, E., Munch, R., Mow, W. H., Cheng, R., & Lau, V. (2007). On the performance of MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Transactions on Wireless Communications, 16(3), 805–810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Judson, D., Bhaskar, V. Interference Cancellation in CDMA Systems Employing Complementary Codes Under Rician Fading Channels. Wireless Pers Commun 101, 897–914 (2018). https://doi.org/10.1007/s11277-018-5732-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5732-3

Keywords

Navigation