Skip to main content

Advertisement

Log in

Femtolet Based Low Power Hetnet Using Soft Fractional Frequency Reuse

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper addresses three prime issues of fifth generation mobile network: frequency allocation, power efficiency and communication while computing. This paper proposes a power-efficient micro-femtolet/macro-femtolet network based on soft fractional frequency reuse. Macrocell/microcell base stations are used in the network, and for providing good signal strength and offloading facilities to indoor and edge region users’ femtolets are allocated inside the macrocell/microcell. The power transmission in the proposed heterogeneous network (HetNet) is estimated. The analytical evaluation presents that use of SFFR reduces the power transmission of the network by 10.87% approximately. This is also observed that the signal-to-interference-plus-noise ratio (SINR) of the network is improved using the proposed strategy. For experimental evaluation we have used vector signal generator (VSG) and vector signal analyzer (VSA). The simulation analyses performed using network simulator Qualnet shows that femtolet provides \(\sim\)(2–34)% reduction in energy consumption than the cloud based offloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://www.scalable-networks.com/qualnet-network-simulation.

References

  1. Obi, E., Usman, A. D., Sani, S. M., Momodou, A., & Tekanyi , S. (2020). Development of a hybrid algorithm for user association and resource allocation to improve load balancing and energy efficiency in 5g hetnet. ELEKTRIKA-Journal of Electrical Engineering, 19(1), 17–25.

    Article  Google Scholar 

  2. Jeyakumar, P., Malar, E., Niveda, S., & Muthuchidambaranathan, P. (2021). Optimal microwave wireless backhaul link design using a massive mimo for 5g hetnet-practical deployment scenario. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08543-8

    Article  Google Scholar 

  3. Xu, Yongjun, Gui, Guan, Gacanin, Haris, & Adachi, Fumiyuki. (2021). A survey on resource allocation for 5g heterogeneous networks: Current research, future trends and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695.

    Article  Google Scholar 

  4. Ghosh, Subha, & De, Debashis. (2021). E2m3: Energy-efficient massive mimo-miso 5g hetnet using stackelberg game. The Journal of Supercomputing. https://doi.org/10.1007/s11227-021-03809-1

    Article  Google Scholar 

  5. Mukherjee, Anwesha, De, Debashis, & Roy, Deepsubhra Guha. (2016). A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), 141–154.

    Article  Google Scholar 

  6. Maghsudi, Setareh, & Niyato, Dusit. (2017). On power-efficient planning in dynamic small cell networks. IEEE Wireless Communications Letters, 7(3), 304–307.

    Article  Google Scholar 

  7. Deb, Priti, Mukherjee, Anwesha, & De, Debashis. (2018). A study of densification management using energy efficient femto-cloud based 5g mobile network. Wireless Personal Communications, 101(4), 2173–2191.

    Article  Google Scholar 

  8. Mukherjee, Anwesha, & De, Debashis. (2016). Femtolet: A novel fifth generation network device for green mobile cloud computing. Simulation Modelling Practice and Theory, 62, 68–87.

    Article  Google Scholar 

  9. Fereydooni, Mehdi, Sabaei, Masoud, Dehghan, Mehdi, Eslamlou, Gita Babazadeh, & Rupp, Markus. (2018). Analytical evaluation of heterogeneous cellular networks under flexible user association and frequency reuse. Computer Communications, 116, 147–158.

    Article  Google Scholar 

  10. Mukherjee, Anwesha, De, Debashis, & Deb, Priti. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.

    Article  Google Scholar 

  11. Kim, Donghee, Ahn, Jae Young, & Kim, Hojoon. (2011). Downlink transmit power allocation in soft fractional frequency reuse systems. ETRI Journal, 33(1), 1–5.

    Article  Google Scholar 

  12. Mukherjee, Anwesha, Deb, Priti, & De, Debashis. (2020). Lfmtcn: A green ultra-dense multi-tier small cell network using leader-follower strategy. Wireless Personal Communications, 110(1), 275–289.

    Article  Google Scholar 

  13. Mukherjee, Anwesha, Deb, Priti, De, Debashis, & Obaidat, Mohammad S. (2019). Wma-mifn: A weighted majority and auction game based green ultra-dense micro-femtocell network system. IEEE Systems Journal, 14(1), 353–362.

    Article  Google Scholar 

  14. Tseng, Chih-Cheng., & Peng, Ching-Shun. (2018). Co-tier uplink interference management by stackelberg game with pricing in co-channel femtocell networks. Wireless Personal Communications, 100(1), 7–23.

    Article  Google Scholar 

  15. Attia, Eman S., El-Dolil, Sami A., & Abd-Elnaby, Mohammed. (2018). Spectrum allocation for enhanced cross-tier interference mitigation with throughput improvement for femtocells in a heterogeneous lte cellular network. Wireless Personal Communications, 101(3), 1671–1683.

    Article  Google Scholar 

  16. Chandrasekhar, Vikram, Andrews, Jeffrey G., & Gatherer, Alan. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  17. Wang, Xiaofei, Vasilakos, Athanasios V., Chen, Min, Liu, Yunhao, & Kwon, Ted Taekyoung. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  18. Mukherjee, Anwesha, Bhattacherjee, Srimoyee, Pal, Sucheta, & De, Debashis. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.

    Article  Google Scholar 

  19. Mhiri, F., Reguiga, KSB., Bouallegue, R., Pujolle, G., (2011). A power management algorithm for green femtocell networks. In: 2011 The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop, IEEE. pp. 45–49.

  20. Al Haddad, M., & Bayoumi, M., (2015). Green novel power control framework for dense femtocell grids. In: International Conference on Computer Vision and Image Analysis Applications, IEEE, pp. 1–6.

  21. Lee, P., Lee, T., Jeong, J., & Shin, J. (2010). Interference management in lte femtocell systems using fractional frequency reuse. In: 2010 The 12th international conference on advanced communication technology (ICACT), IEEE, vol 2 (pp. 1047–1051).

  22. Kang, Xin, Zhang, Rui, & Motani, Mehul. (2012). Price-based resource allocation for spectrum-sharing femtocell networks: A stackelberg game approach. IEEE Journal on Selected areas in Communications, 30(3), 538–549.

    Article  Google Scholar 

  23. Saquib, Nazmus, Hossain, Ekram, Le, Long Bao, & Kim, Dong In. (2012). Interference management in ofdma femtocell networks: Issues and approaches. IEEE Wireless Communications, 19(3), 86–95.

    Article  Google Scholar 

  24. Sharma, Nitin, Badheka, Divyakumar, & Anpalagan, Alagan. (2014). Multiobjective subchannel and power allocation in interference-limited two-tier ofdma femtocell networks. IEEE Systems Journal, 10(2), 544–555.

    Article  Google Scholar 

  25. Chai, Xiaomeng, Zhang, Zhongshan, & Long, Keping. (2015). Joint spectrum-sharing and base station sleep model for improving energy efficiency of heterogeneous networks. IEEE Systems Journal, 12(1), 560–570.

    Article  Google Scholar 

  26. Ghosh, J., & Jayakody, D. N. K. (2018). An analytical view of ase for multicell ofdma networks based on frequency-reuse scheme. IEEE Systems Journal, 14(1), 645–648.

    Article  Google Scholar 

  27. Ghosh, Subha, De, Debashis, & Deb, Priti. (2019). Energy and spectrum optimization for 5g massive mimo cognitive femtocell based mobile network using auction game theory. Wireless Personal Communications, 106(2), 555–576.

    Article  Google Scholar 

  28. Othman, Mazliza, Khan, Abdul Nasir, Shuja, Junaid, Mustafa, Saad, et al. (2017). Computation offloading cost estimation in mobile cloud application models. Wireless Personal Communications, 97(3), 4897–4920.

    Article  Google Scholar 

  29. Pandey, Vikas, Singh, Shashank, & Tapaswi, Shashikala. (2015). Energy and time efficient algorithm for cloud offloading using dynamic profiling. Wireless Personal Communications, 80(4), 1687–1701.

    Article  Google Scholar 

  30. Mukherjee, A., De, D., & Buyya, R. (2019). E2r–f2n: Energy-efficient retailing using a femtolet-based fog network. Software: Practice and Experience, 49(3), 498–523.

    Google Scholar 

  31. Deb, P., Mukherjee, A., & De, D. (2019). Design of green smart room using fifth generation network device femtolet. Wireless Personal Communications, 104(3), 1037–1064.

    Article  Google Scholar 

  32. Mukherjee, Anwesha, Deb, Priti, De, Debashis, & Buyya, Rajkumar. (2018). C2of2n: A low power cooperative code offloading method for femtolet-based fog network. The Journal of Supercomputing, 74(6), 2412–2448.

    Article  Google Scholar 

  33. Roy, D. G., Mukherjee, A., De, D., & Srirama, S. N. (2019). Practical implementation of femtolet based peer-to-peer network. Wireless Personal Communications, 108(4), 2477–2498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Deb, P. & De, D. Femtolet Based Low Power Hetnet Using Soft Fractional Frequency Reuse. Wireless Pers Commun 121, 2529–2544 (2021). https://doi.org/10.1007/s11277-021-08835-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08835-z

Keywords

Navigation