Skip to main content
Log in

A Systematic Review on Techniques Adapted for Segmentation and Classification of Ischemic Stroke Lesions from Brain MR Images

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A life threatening medical condition occurs when arteries that supplies blood to the brain gets blocked resulting in Ischemic Stroke. Magnetic resonance imaging (MRI) plays major role in diagnosis of brain stroke at early stages. Manual detection of stroke lesions by medical experts is time-consuming, expensive, and susceptible to intra- and inter-observer variability. Accurate detection of stroke lesions from brain MRI, the challenging task requires development of automated computer aided diagnostic techniques. This paper aims at reviewing the state of art techniques currently available fulfilling the above objectives, their merits and limitation. Through this review we figure out the modifications that need to be carried out in future to develop best automated diagnostic tool which performs better and mitigates all the pitfalls in current literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Courtesy Mayo Clinic)

Fig. 2
Fig. 3
Fig. 4

[courtesy from reference 22]

Fig. 5

[courtesy from reference 26]

Fig. 6

[courtesy from reference 33]

Similar content being viewed by others

References

  1. National Institutes of Health. (2011). Brain basics: Preventing stroke. Brain basics: Preventing stroke.

  2. Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., & de Ferranti, S. D. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation.

  3. Pandian, J. D., & Sudhan, P. (2013). Stroke epidemiology and stroke care services in India. Journal of Stroke, 15(3), 128.

    Article  Google Scholar 

  4. Prasad, K., Vibha, D., & Meenakshi, (2012). Cerebrovascular disease in South Asia-Part I: A burning problem. JRSM Cardiovascular Disease, 1(7), 1–7.

    Article  Google Scholar 

  5. Towfighi, A., & Saver, J. L. (2011). Stroke declines from third to fourth leading cause of death in the United States: Historical perspective and challenges ahead. Stroke, 42(8), 2351–2355.

    Article  Google Scholar 

  6. Feigin, V. L., Lawes, C. M., Bennett, D. A., Barker-Collo, S. L., & Parag, V. (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. The Lancet Neurology, 8(4), 355–369.

    Article  Google Scholar 

  7. World Health Organization. Cerebrovascular disorders. A Clinical and Research Classification, offset publication 43. Geneva: World Health Organization.

  8. Bamford, J., Sandercock, P., Dennis, M., Warlow, C., & Burn, J. J. T. L. (1991). Classification and natural history of clinically identifiable subtypes of cerebral infarction. The Lancet, 337(8756), 1521–1526.

    Article  Google Scholar 

  9. Fisher, M. (1999). Antithrombotic and thrombolytic therapy for ischemic stroke. Journal of Thrombosis and Thrombolysis, 7(2), 165–169.

    Article  Google Scholar 

  10. Barber, P. A., Darby, D. G., Desmond, P. M., Gerraty, R. P., Yang, Q., Li, T., et al. (1999). Identification of major ischemic change: Diffusion-weighted imaging versus computed tomography. Stroke, 30(10), 2059–2065.

    Article  Google Scholar 

  11. Petrick, N., Sahiner, B., Armato, S. G., III, Bert, A., Correale, L., Delsanto, S., et al. (2013). Evaluation of computer-aided detection and diagnosis systems a. Medica Physics, 40(8), 087001.

    Article  Google Scholar 

  12. Wong, K. P. (2005). Medical image segmentation: Methods and applications in functional imaging. In Handbook of biomedical image analysis (pp. 111–182). Boston, MA: Springer.

  13. Norouzi, A., Rahim, M. S. M., Altameem, A., Saba, T., Rad, A. E., Rehman, A., et al. (2014). Medical image segmentation methods, algorithms, and applications. IETE Technical Review, 31(3), 199–213.

    Article  Google Scholar 

  14. Carey, L. M., Seitz, R. J., Parsons, M., Levi, C., Farquharson, S., Tournier, J. D., et al. (2013). Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurology, 8(5), 507–527.

    Article  Google Scholar 

  15. Knight, R. A., Dereski, M. O., Helpern, J. A., Ordidge, R. J., & Chopp, M. (1994). Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats. Stroke, 25(6), 1252–1261.

    Article  Google Scholar 

  16. Baird, A. E., & Warach, S. (1998). Magnetic resonance imaging of acute stroke. Journal of Cerebral Blood Flow and Metabolism, 18(6), 583–609.

    Article  Google Scholar 

  17. Rivers, C. S., Wardlaw, J. M., Armitage, P. A., Bastin, M. E., Hand, P. J., & Dennis, M. S. (2007). Acute ischemic stroke lesion measurement on diffusion-weighted imaging—Important considerations in designing acute stroke trials with magnetic resonance imaging. Journal of Stroke and Cerebrovascular Diseases, 16(2), 64–70.

    Article  Google Scholar 

  18. Xavier, A. R., Qureshi, A. I., Kirmani, J. F., Yahia, A. M., & Bakshi, R. (2003). Neuroimaging of stroke: A review. Southern Medical Journal, 96(4), 367–379.

    Article  Google Scholar 

  19. Cavalieri, M., Enzinger, C., Petrovic, K., Pluta-Fuerst, A., Homayoon, N., Schmidt, H., et al. (2010). Vascular dementia and Alzheimer’s disease—Are we in a dead-end road? Neurodegenerative Diseases, 7(1–3), 122–126.

    Article  Google Scholar 

  20. Debette, S., & Markus, H. S. (2010). The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ, 341, c3666.

    Article  Google Scholar 

  21. Mitra, J., Bourgeat, P., Fripp, J., Ghose, S., Rose, S., Salvado, O., et al. (2014). Lesion segmentation from multimodal MRI using random forest following Ischemic stroke. NeuroImage, 98, 324–335.

    Article  Google Scholar 

  22. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., & Suetens, P. (2001). Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 20(8), 677–688.

    Article  Google Scholar 

  23. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton: CRC Press.

    MATH  Google Scholar 

  24. Yi, Z., Criminisi, A., Shotton, J., & Blake, A. (2009). Discriminative, semantic segmentation of brain tissue in MR images. In International conference on medical image computing and computer-assisted intervention (pp. 558–565). Springer: Berlin.

  25. Criminisi, A., Shotton, J., & Konukoglu, E. (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114, 5(6), 12.

  26. Chyzhyk, D., Dacosta-Aguayo, R., Mataró, M., & Graña, M. (2015). An active learning approach for stroke lesion segmentation on multimodal MRI data. Neurocomputing, 150, 26–36.

    Article  Google Scholar 

  27. Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng, L., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91.

    Article  Google Scholar 

  28. Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141.

    Article  Google Scholar 

  29. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400.

    Article  Google Scholar 

  30. Kendall, M., & Gibbons, J. D. (1990). Rank correlation methods (5th ed.). New York: Oxford University Press.

    MATH  Google Scholar 

  31. Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning. Machine Learning, 15(2), 201–221.

    Google Scholar 

  32. Tuia, D., Pasolli, E., & Emery, W. J. (2011). Using active learning to adapt remote sensing image classifiers. Remote Sensing of Environment, 115(9), 2232–2242.

    Article  Google Scholar 

  33. Maier, O., Wilms, M., von der Gablentz, J., Krämer, U. M., Münte, T. F., & Handels, H. (2015). Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. Journal of Neuroscience Methods, 240, 89–100.

    Article  Google Scholar 

  34. Shamonin, D. P., Bron, E. E., Lelieveldt, B. P., Smits, M., Klein, S., & Staring, M. (2014). Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Frontiers in Neuroinformatics, 7, 50.

    Google Scholar 

  35. Klein, S., Staring, M., Murphy, K., Viergever, M. A., & Pluim, J. P. (2009). Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging, 29(1), 196–205.

    Article  Google Scholar 

  36. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.

    Article  Google Scholar 

  37. Likar, B., Viergever, M. A., & Pernus, F. (2001). Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Transactions on Medical Imaging, 20(12), 1398–1410.

    Article  Google Scholar 

  38. Nyúl, L. G., Udupa, J. K., & Zhang, X. (2000). New variants of a method of MRI scale standardization. IEEE Transactions on Medical Imaging, 19(2), 143–150.

    Article  Google Scholar 

  39. Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42.

    Article  MATH  Google Scholar 

  40. Maier, O., Schröder, C., Forkert, N. D., Martinetz, T., & Handels, H. (2015). Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS ONE, 10(12), e0145118.

    Article  Google Scholar 

  41. Zhang, H. (2004). IThe optimality of Naive Bayes. In Proceedings of seventeenth international Florida artificial intelligence research society conference FLAIRS 2004 (Vol. 1, No. 2, pp. 1–6).

  42. Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41–46).

  43. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.

    Article  MATH  Google Scholar 

  44. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

    Article  MathSciNet  MATH  Google Scholar 

  45. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  46. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.

    Article  Google Scholar 

  47. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675–678).

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the facts and materials reviewed throughout this article are derived from cited external sources and does not include author’s personal research work.

Corresponding author

Correspondence to Kalpana Murugan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, S.K., Murugan, K. A Systematic Review on Techniques Adapted for Segmentation and Classification of Ischemic Stroke Lesions from Brain MR Images. Wireless Pers Commun 118, 1225–1244 (2021). https://doi.org/10.1007/s11277-021-08069-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08069-z

Keywords

Navigation