Skip to main content
Log in

Artificial intelligence in cerebral stroke images classification and segmentation: A comprehensive study

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A brain stroke, commonly called as a cerebral vascular accident (CVA) is one of the deadliest diseases across the globe and may lead to various physical impairments or even death. Therefore, timely detection, diagnosis, and treatment of said medical emergency are urgent requirements to minimize life loss, which is not affordable in any sense. Nowadays, with the advancements in Artificial Intelligence, Machine Learning, and Deep Learning, these techniques are popularly used in the domain of medical image analysis in general, and brain stroke imaging in particular, to automate image analysis more accurately and less human error-prone. The aim of this state-of-the-art study is to explore the latest computer-aided diagnosis (CAD) techniques to detect, classify, and segment cerebral strokes. Available methods or techniques, and tools used for analysis have been presented and compared with their attained results. In this study, available open-access datasets in the domain of brain stroke analysis have been explored and presented. Moreover, the research also includes the major challenges and provides researchers with applicable future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. The Central Nervous System: Structure and Function - Per Brodal - Google Books. https://books.google.co.in/books?hl=en&lr=&id=WdATFQ0YUrMC&oi=fnd&pg=PR7&dq=brain+structure+and+nervous+system&ots=TVt9ofJzVV&sig=fjPE2T798Jbr07ksqNluorZXGlw&redir_esc=y#v=onepage&q&f=false. Accessed 3 Nov 2022

  2. Calhoun V (2022) Data-driven approaches for identifying links between brain structure and function in health and disease. Dialogues Clin Neurosci 20:87–100. https://doi.org/10.31887/DCNS.2018.20.2/VCALHOUN

    Article  Google Scholar 

  3. Casillo SM, Luy DD, Goldschmidt E (2020) A History of the Lobes of the Brain. World Neurosurg 134:353–360. https://doi.org/10.1016/J.WNEU.2019.10.155

    Article  Google Scholar 

  4. Bontempi D, Benini S, Signoroni A et al (2020) CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI. Med Image Anal 62:101688. https://doi.org/10.1016/J.MEDIA.2020.101688

    Article  Google Scholar 

  5. King M, Hernandez-Castillo CR, Poldrack RA et al (2019) (2019) Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci 228(22):1371–1378. https://doi.org/10.1038/s41593-019-0436-x

    Article  Google Scholar 

  6. Sclocco R, Beissner F, Bianciardi M et al (2018) Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 168:412–426. https://doi.org/10.1016/J.NEUROIMAGE.2017.02.052

    Article  Google Scholar 

  7. Brain Structure And Function | Brain Injury | British Columbia. https://www.nbia.ca/brain-structure-function/. Accessed 11 Dec 2022

  8. Tsao CW, Aday AW, Almarzooq ZI et al (2022) Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. Circulation 145:E153–E639

    Article  Google Scholar 

  9. World Health Organization (2014) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 17 Oct 2022

  10. Inamdar MA, Raghavendra U, Gudigar A et al (2021) A Review on Computer Aided Diagnosis of Acute Brain Stroke. Sensors 21(8507):21–8507. https://doi.org/10.3390/S21248507

    Article  Google Scholar 

  11. Vilela P, Rowley HA (2017) Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol 96:162–172. https://doi.org/10.1016/J.EJRAD.2017.08.014

    Article  Google Scholar 

  12. Karthik R, Menaka R (2017) Computer-aided detection and characterization of stroke lesion – a short review on the current state-of-the art methods. Imaging Sci J 66:1–22. https://doi.org/10.1080/13682199.2017.1370879

    Article  Google Scholar 

  13. Demeestere J, Wouters A, Christensen S, et al (2020) Review of Perfusion Imaging in Acute Ischemic Stroke. Stroke 1017–1024https://doi.org/10.1161/STROKEAHA.119.028337

  14. Meijs M, Meijer FJA, Prokop M et al (2020) Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning. Med Image Anal 66:101810. https://doi.org/10.1016/J.MEDIA.2020.101810

    Article  Google Scholar 

  15. Karthik R, Menaka R, Johnson A, Anand S (2020) Neuroimaging and deep learning for brain stroke detection - A review of recent advancements and future prospects. Comput Methods Programs Biomed 197:105728. https://doi.org/10.1016/J.CMPB.2020.105728

    Article  Google Scholar 

  16. Macellari F, Paciaroni M, Agnelli G, Caso V (2014) Neuroimaging in intracerebral hemorrhage. Stroke 45:903–908

    Article  Google Scholar 

  17. ISLES: Ischemic Stroke Lesion Segmentation Challenge 2022. http://www.isles-challenge.org/. Accessed 17 Oct 2022

  18. Dick S (2019) Artificial Intelligence. Harvard Data Sci Rev 1:. https://doi.org/10.1162/99608F92.92FE150C

  19. Alzubi JA, Kumar A, Alzubi OA, Manikandan R (2019) Efficient approaches for prediction of brain tumor using machine learning techniques. Indian J Public Heal Res Dev 10:267–272. https://doi.org/10.5958/0976-5506.2019.00298.5

    Article  Google Scholar 

  20. de Bruijne M (2016) Machine learning approaches in medical image analysis: From detection to diagnosis. Med Image Anal 33:94–97. https://doi.org/10.1016/J.MEDIA.2016.06.032

    Article  Google Scholar 

  21. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine Learning for Medical Imaging. Radiographics 37:505. https://doi.org/10.1148/RG.2017160130

    Article  Google Scholar 

  22. Libbrecht MW (2015) Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 166(16):321–332. https://doi.org/10.1038/nrg3920

    Article  Google Scholar 

  23. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565–1567

    Article  Google Scholar 

  24. Schober P, Vetter TR (2021) Logistic Regression in Medical Research. Anesth Analg 132:365. https://doi.org/10.1213/ANE.0000000000005247

    Article  Google Scholar 

  25. Alzubi OA, Alzubi JA, Alweshah M et al (2020) An optimal pruning algorithm of classifier ensembles: dynamic programming approach. Neural Comput Appl 32:16091–16107. https://doi.org/10.1007/S00521-020-04761-6

    Article  Google Scholar 

  26. Chen T, Shang C, Su P et al (2021) A Decision Tree-Initialised Neuro-fuzzy Approach for Clinical Decision Support. Artif Intell Med 111:101986. https://doi.org/10.1016/J.ARTMED.2020.101986

    Article  Google Scholar 

  27. Wickramasinghe I, Kalutarage H (2021) Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput 25:2277–2293. https://doi.org/10.1007/S00500-020-05297-6/FIGURES/2

    Article  Google Scholar 

  28. Thayumanavan M, Ramasamy A (2021) An efficient approach for brain tumor detection and segmentation in MR brain images using random forest classifier, 266–274https://doi.org/10.1177/1063293X211010542

  29. Movassagh AA, Alzubi JA, Gheisari M et al (2023) Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput 14:6017–6025. https://doi.org/10.1007/s12652-020-02623-6

    Article  Google Scholar 

  30. Shahid N, Rappon T, Berta W (2019) Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS ONE 14:e0212356

    Article  Google Scholar 

  31. Mutasa S, Sun S, Ha R (2021) Understanding artificial intelligence based radiology studies: CNN architecture. Clin Imaging 80:72–76. https://doi.org/10.1016/J.CLINIMAG.2021.06.033

    Article  Google Scholar 

  32. Chen M, Shi X, Zhang Y et al (2017) Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Trans Big Data 7:750–758. https://doi.org/10.1109/TBDATA.2017.2717439

    Article  Google Scholar 

  33. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: A review. Med Image Anal 58:101552. https://doi.org/10.1016/J.MEDIA.2019.101552

    Article  Google Scholar 

  34. Alzubi OA, Alzubi JAA, Tedmori S, Rashaideh H, Almomani O (2018) Consensus-based combining method for classifier ensembles. Int Arab J Inf Technol 15(1):76–86

    Google Scholar 

  35. Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar LD (2017) New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities. Comput Methods Programs Biomed 148:27–43. https://doi.org/10.1016/j.cmpb.2017.06.011

    Article  Google Scholar 

  36. Karthik R, Menaka R (2017) A multi-scale approach for detection of ischemic stroke from brain MR images using discrete curvelet transformation. Meas J Int Meas Confed 100:223–232. https://doi.org/10.1016/j.measurement.2017.01.001

    Article  Google Scholar 

  37. Subudhi A, Acharya UR, Dash M et al (2018) Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images. Comput Biol Med 103:116–129. https://doi.org/10.1016/j.compbiomed.2018.10.016

    Article  Google Scholar 

  38. Rajendra Acharya U, Meiburger KM, Faust O et al (2019) Automatic detection of ischemic stroke using higher order spectra features in brain MRI images. Cogn Syst Res 58:134–142. https://doi.org/10.1016/j.cogsys.2019.05.005

    Article  Google Scholar 

  39. Dourado CMJM, da Silva SPP, da Nóbrega RVM et al (2019) Deep learning IoT system for online stroke detection in skull computed tomography images. Comput Networks 152:25–39. https://doi.org/10.1016/J.COMNET.2019.01.019

    Article  Google Scholar 

  40. Patel A, Van De Leemput SC, Prokop M et al (2019) Image Level Training and Prediction: Intracranial Hemorrhage Identification in 3D Non-Contrast CT. IEEE Access 7:92355–92364. https://doi.org/10.1109/ACCESS.2019.2927792

    Article  Google Scholar 

  41. Ho KC, Speier W, Zhang H et al (2019) A Machine Learning Approach for Classifying Ischemic Stroke Onset Time from Imaging. IEEE Trans Med Imaging 38:1666–1676. https://doi.org/10.1109/TMI.2019.2901445

    Article  Google Scholar 

  42. Anbumozhi S (2020) Computer aided detection and diagnosis methodology for brain stroke using adaptive neuro fuzzy inference system classifier. Int J Imaging Syst Technol 30:196–202. https://doi.org/10.1002/ima.22380

    Article  Google Scholar 

  43. Gautam A, Raman B (2020) Local gradient of gradient pattern: a robust image descriptor for the classification of brain strokes from computed tomography images. Pattern Anal Appl 23:797–817. https://doi.org/10.1007/s10044-019-00838-8

    Article  Google Scholar 

  44. Vasconcelos FFX, Sarmento RM, Rebouças Filho PP, de Albuquerque VHC (2020) Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis. Eng Appl Artif Intell 91:103585. https://doi.org/10.1016/j.engappai.2020.103585

    Article  Google Scholar 

  45. Herzog L, Murina E, Dürr O et al (2020) Integrating uncertainty in deep neural networks for MRI based stroke analysis. Med Image Anal 65:101790. https://doi.org/10.1016/j.media.2020.101790

    Article  Google Scholar 

  46. Anupama CSS, Sivaram M, Lydia EL et al (2022) Synergic deep learning model–based automated detection and classification of brain intracranial hemorrhage images in wearable networks. Pers Ubiquitous Comput 26:1–10. https://doi.org/10.1007/s00779-020-01492-2

    Article  Google Scholar 

  47. Gautam A, Raman B (2021) Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomed Signal Process Control 63:102178. https://doi.org/10.1016/j.bspc.2020.102178

    Article  Google Scholar 

  48. Cetinoglu YK, Koska IO, Uluc ME, Gelal MF (2021) Detection and vascular territorial classification of stroke on diffusion-weighted MRI by deep learning. Eur J Radiol 145:110050. https://doi.org/10.1016/j.ejrad.2021.110050

    Article  Google Scholar 

  49. Xu Y, Holanda G, Souza LFDF et al (2021) Deep Learning-Enhanced Internet of Medical Things to Analyze Brain CT Scans of Hemorrhagic Stroke Patients: A New Approach. IEEE Sens J 21:24941–24951. https://doi.org/10.1109/JSEN.2020.3032897

    Article  Google Scholar 

  50. Gautam A, Raman B (2021) Brain strokes classification by extracting quantum information from CT scans. Multimed Tools Appl 1–17. https://doi.org/10.1007/s11042-021-11342-9

  51. Neethi AS, Niyas S, Kannath SK et al (2022) Stroke classification from computed tomography scans using 3D convolutional neural network. Biomed Signal Process Control 76:103720. https://doi.org/10.1016/j.bspc.2022.103720

    Article  Google Scholar 

  52. Dogan S, Barua PD, Baygin M et al (2022) Novel multiple pooling and local phase quantization stable feature extraction techniques for automated classification of brain infarcts. Biocybern Biomed Eng 42:815–828. https://doi.org/10.1016/j.bbe.2022.06.004

    Article  Google Scholar 

  53. Chen YT, Chen YL, Chen YY et al (2022) Deep Learning-Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke. Diagnostics 12:807. https://doi.org/10.3390/diagnostics12040807

    Article  Google Scholar 

  54. Tasci B, Tasci I (2022) Deep feature extraction based brain image classification model using preprocessed images: PDRNet. Biomed Signal Process Control 78:103948. https://doi.org/10.1016/j.bspc.2022.103948

    Article  Google Scholar 

  55. Din MS, Gurbuz S, Akbal E et al (2022) Exemplar deep and hand-modeled features based automated and accurate cerebral hemorrhage classification method. Med Eng Phys 105:103819. https://doi.org/10.1016/j.medengphy.2022.103819

    Article  Google Scholar 

  56. Altuve M, Pérez A (2022) Intracerebral hemorrhage detection on computed tomography images using a residual neural network. Phys Medica 99:113–119. https://doi.org/10.1016/j.ejmp.2022.05.015

    Article  Google Scholar 

  57. Deepa B, Murugappan M, Sumithra MG et al (2022) Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification Using Hybridized Machine Learning Algorithm. IEEE Access 10:3848–3863. https://doi.org/10.1109/ACCESS.2021.3100549

    Article  Google Scholar 

  58. Sivakumar P, Ganeshkumar P (2017) An efficient automated methodology for detecting and segmenting the ischemic stroke in brain MRI images. Int J Imaging Syst Technol 27:265–272. https://doi.org/10.1002/ima.22231

    Article  Google Scholar 

  59. Zhang R, Zhao L, Lou W et al (2018) Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets. IEEE Trans Med Imaging 37:2149–2160. https://doi.org/10.1109/TMI.2018.2821244

    Article  Google Scholar 

  60. Gautam A, Raman B (2019) Segmentation of ischemic stroke lesion from 3d mr images using random forest. Multimed Tools Appl 78:6559–6579. https://doi.org/10.1007/s11042-018-6418-2

    Article  Google Scholar 

  61. Deepa B, Sumithra MG (2019) An intensity factorized thresholding based segmentation technique with gradient discrete wavelet fusion for diagnosing stroke and tumor in brain MRI. Multidimens Syst Signal Process 30:2081–2112. https://doi.org/10.1007/s11045-019-00642-x

    Article  Google Scholar 

  62. Liu L, Chen S, Zhang F et al (2020) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl 32:6545–6558. https://doi.org/10.1007/s00521-019-04096-x

    Article  Google Scholar 

  63. Nishio M, Koyasu S, Noguchi S et al (2020) Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model. Comput Methods Programs Biomed 196:105711. https://doi.org/10.1016/j.cmpb.2020.105711

    Article  Google Scholar 

  64. Nazari-Farsani S, Nyman M, Karjalainen T et al (2020) Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI. J Neurosci Methods 333:108575. https://doi.org/10.1016/j.jneumeth.2019.108575

    Article  Google Scholar 

  65. Li L, Wei M, Liu B et al (2021) Deep Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images. IEEE J Biomed Heal Inform 25:1646–1659. https://doi.org/10.1109/JBHI.2020.3028243

    Article  Google Scholar 

  66. Zhang L, Zhu C, Wu YW et al (2021) SFCN: Symmetric feature comparison network for detecting ischemic stroke lesions on CT images. IET Image Process 15:2818–2832. https://doi.org/10.1049/ipr2.12267

    Article  Google Scholar 

  67. Shin H, Agyeman R, Rafiq M et al (2022) Automated segmentation of chronic stroke lesion using efficient U-Net architecture. Biocybern Biomed Eng 42:285–294. https://doi.org/10.1016/j.bbe.2022.01.002

    Article  Google Scholar 

  68. Wang S, Chen Z, You S et al (2022) Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput Appl 34:8657–8669. https://doi.org/10.1007/s00521-021-06816-8

    Article  Google Scholar 

  69. Tomasetti L, Hollesli LJ, Engan K et al (2022) Machine Learning Algorithms Versus Thresholding to Segment Ischemic Regions in Patients with Acute Ischemic Stroke. IEEE J Biomed Heal Informatics 26:660–672. https://doi.org/10.1109/JBHI.2021.3097591

    Article  Google Scholar 

  70. Bao Q, Mi S, Gang B et al (2022) MDAN: Mirror Difference Aware Network for Brain Stroke Lesion Segmentation. IEEE J Biomed Heal Inform 26:1628–1639. https://doi.org/10.1109/JBHI.2021.3113460

    Article  Google Scholar 

  71. ITK-SNAP Home. http://www.itksnap.org/pmwiki/pmwiki.php. Accessed 1 Aug 2023

  72. Subudhi A, Dash M, Sabut S (2020) Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern Biomed Eng 40:277–289. https://doi.org/10.1016/j.bbe.2019.04.004

    Article  Google Scholar 

  73. Yalçın S, Vural H (2022) Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks. Comput Biol Med 149:105941. https://doi.org/10.1016/j.compbiomed.2022.105941

    Article  Google Scholar 

  74. BraTS - V7 Open Datasets. https://www.v7labs.com/open-datasets/brats. Accessed 22 Oct 2022

  75. OpenNeuro. https://openneuro.org/. Accessed 22 Oct 2022

  76. PhysioNet. https://physionet.org/. Accessed 22 Oct 2022

  77. ISLES: Ischemic Stroke Lesion Segmentation Challenge 2022. https://www.isles-challenge.org/. Accessed 22 Oct 2022

  78. Anatomical Tracings of Lesions After Stroke (ATLAS). https://www.fcon_1000.projects.nitrc.org/indi/retro/atlas.html. Accessed 22 Oct 2022

  79. ADNI | Alzheimer’s Disease Neuroimaging Initiative. https://www.adni.loni.usc.edu/. Accessed 22 Oct 2022

  80. OASIS Brains - Open Access Series of Imaging Studies. https://www.oasis-brains.org/. Accessed 22 Oct 2022

  81. Naser MZ, Alavi A (2020) Insights into Performance Fitness and Error Metrics for Machine Learning. Archit Struct Constr. https://doi.org/10.1007/s44150-021-00015-8

    Article  Google Scholar 

  82. Shamir RR, Duchin Y, Kim J, et al (2019) Continuous Dice Coefficient: a Method for Evaluating Probabilistic Segmentations. https://doi.org/10.48550/arxiv.1906.11031

  83. Yeghiazaryan V, Voiculescu I (2018) Family of boundary overlap metrics for the evaluation of medical image segmentation. J Med Imaging 5:1. https://doi.org/10.1117/1.JMI.5.1.015006

    Article  Google Scholar 

  84. Karimi D, Salcudean SE (2020) Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks. IEEE Trans Med Imaging 39:499–513. https://doi.org/10.1109/TMI.2019.2930068

    Article  Google Scholar 

  85. Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, pp 658–666

Download references

Funding

No funding has been received from any person or organization to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourav Kumar Sharma.

Ethics declarations

Conflicts of interests

There is no conflict of interest related to this research.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G.K., Kumar, S., Ranga, V. et al. Artificial intelligence in cerebral stroke images classification and segmentation: A comprehensive study. Multimed Tools Appl 83, 43539–43575 (2024). https://doi.org/10.1007/s11042-023-17324-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17324-3

Keywords

Navigation