Skip to main content
Log in

Compensating Method of the Height Anomalies for Ultra-High Earth’s Gravity Field Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

EIGEN-6C4 and EGM2008 ultra-high Earth’s gravity field models on their expanded order and degree are limited and exist certain omission errors. The RTM residual height anomalies is obtained from SRTM data and DTM2006.0 data via a prism integral forward-modelling method. The testing results show that (1) before fitting via RTM height anomalies the standard deviation of model height anomalies for EIGEN-6C4 and EGM2008 can be improved by 5.7 mm, the improvement rate respectively is 10 and 7%. (2) After fitting via RTM height anomalies their standard deviations can respectively be improved by 1.0 and 3.3 cm, the improvement rate respectively is 2 and 6%. (3) The RTM height anomalies change along with the increasing of the integral radius, and their values is tending towards stability, are converged to 2 cm, the height anomalies values of EIGEN-6C4 and EGM2008 models change respectively to be in order of cm in scope of 110 km and in scope of 105 km. (4) The RTM technique is an effective method of compensating the accuracy of ultra-high Earth’s gravity field model to the benefit of raising the quasigeoid accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li, J. (2012). The recent Chinese terrestrial digital height datum model: Gravimetric quasigeoid CNGG-2011. Studia Geophysica et Geodaetica, 38, 651–660.

    Google Scholar 

  2. Zhang, C., Guo, C., & Chen, J. (2009). EGM2008 and its application analysis in Chinese mainland. Acta Geodaetica et Cartographica Sinica, 38(4), 283–289.

    Google Scholar 

  3. Jiancheng, L. I., & Taoyong, J. I. N. (2013). On the main progress of satellite altimetry and its application. Journal of Geomatics, 38(4), 1–8. doi:10.14188/j.2095-6045.2013.04.010.

    Google Scholar 

  4. AllahTavakoli, Y., Safari, A., Ardalan, A., & Bahrodi, A. (2015). Application of the RTM-technique to gravity reduction for tracking near-surface mass-density anomalies: A case study of salt diapirs in Iran. Studia Geophysica et Geodaetica, 59(3), 409–423. doi:10.1007/s11200-014-0215-9.

    Article  Google Scholar 

  5. Zhai, C., Yao, Y., & Yue, S. (2015). Geoid refinement method based on the regional EGM2008 and residual terrain model. Journal of Geodesy and Geodynamics, 35(6), 941–944. doi:10.14075/j.jgg.2015.06.007.

    Google Scholar 

  6. Filmer, M. S., Featherstone, W. E., & Kuhn, M. (2010). The effect of EGM2008-based normal, normal orthometric and Helmert orthometric height systems on the Australian levelling network. Journal of Geodesy, 84, 501–513. doi:10.1007/s00190-013-0666-8.

    Article  Google Scholar 

  7. Zhang, X., & Liu, C. (2012). The approach of GPS height transformation based on EGM2008 and SR-TM/DTM2006.0 residual terrain model. Acta Geodaetica et Cartographica Sinica, 41(1), 5–32.

    Google Scholar 

  8. Fan, H., Guo, C., Wang, X., Wang, X., & Wang, W. (2015). Adaptability analysis on ultra-high gravity model EIGEN-6C2 in Chinese coastal zone. Science of Surveying and Mapping, 40(9), 1822. doi:10.16251/j.cnki.1002307.2015.09.004.

    Google Scholar 

  9. Fan, H. (2014). The EIGEN-6C2 earth gravity field model analysis and comparison with GNSS leveling in Chinese mainland and Islands. Geomatics and Spatial Information Technology, 37(11), 75–79.

    Google Scholar 

  10. Hirt, C., Feathertone, W. E., & Marti, U. (2010). Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. Journal of Geodesy, 41(7), 557–567. doi:10.1007/s00190-010-0395-1.

    Article  Google Scholar 

  11. Kiliçoğlu, A., Direnç, A., Yildiz, H., Bölme, M., Aktuğ, B., Simav, M., et al. (2011). Regional gravimetric quasigeoid model and transformation surface to national height system for Turkey (THG-09). Studia Geophysica et Geodaetica, 55(10), 557–578. doi:10.1007/s11200-010-9023-z.

    Article  Google Scholar 

  12. Denker, H., & Wenzel, H. G. (1987). Local geoid determination and comparison with GPS results. Bulletin Geodesique, 61(4), 349–366. doi:10.1007/BF02520560.

    Article  Google Scholar 

  13. Tziavos, I. N., Vergos, G. S., & Grigoriadis, V. N. (2010). Investigation of topographic reductions and aliasing effects on gravity and the geoid over Greece based on various digital terrain models. Surveys in Geophysics, 31(1), 23–67. doi:10.1007/s10712-009-9085-z.

    Article  Google Scholar 

  14. Sjöberg, L. E. (2005). A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling. Journal of Geodesy, 78(11), 645–653. doi:10.1007/s00190-004-0430-1.

    Article  Google Scholar 

  15. De Lacy, M. C., & Rodriguezcaderot, G. (2001). A gravimetric geoid computation and comparison with GPS results in Northern Andalusia (Spain). Studia Geophysica et Geodaetica, 45(1), 55–66. doi:10.1023/A:1021702514130.

    Article  Google Scholar 

  16. Ďuríčková, Z., & Janák, J. (2016). RTM-based omission error corrections for global geo-potential models: Case study in Central Europe. Studia Geophysica et Geodaetica, 60(4), 622–643. doi:10.1007/s11200-015-0598-2.

    Article  Google Scholar 

  17. Omang, O. C. D., & Forsberg, R. (2000). How to handle topography in practical geoid determination: Three examples. Journal of Geodesy, 74(6), 458–466. doi:10.1007/s001900000107.

    Article  MATH  Google Scholar 

  18. He, L., Li, J., & Chu, Y. (2016). The vertical shift between 1985 national height datum and global vertical datum. Studia Geophysica et Geodaetica, 45(7), 768–774.

    Google Scholar 

Download references

Acknowledgements

The paper is aid financially by the project “The refinement method for local regional quesigeoid” (KJK-F-14-08) of General Academic University Key Laboratory of Heilongjiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qingwu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qingwu, M., Jianguang, Q., Xiuhai, L. et al. Compensating Method of the Height Anomalies for Ultra-High Earth’s Gravity Field Model. Wireless Pers Commun 97, 75–94 (2017). https://doi.org/10.1007/s11277-017-4493-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4493-8

Keywords

Navigation