Skip to main content
Log in

2-D Direction-of-Arrival: Estimation of Azimuth and Elevation by Exploiting the Amplitude Modulation Induced by Antenna’s Mechanical and Electronic Scan

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a beam-splitting like approach to find azimuth and elevation angles of multiple targets present in the mainlobe of scanning radar. L-shaped planar array is used to resolve targets in azimuth and elevation. Azimuth is scanned mechanically by rotation of the antenna while elevation is scanned electronically. Previously this approach was used to find Direction-of-Arrival in only one dimension; we have extended to resolve targets in 2 dimensions. Simulation results show the effectiveness of the proposed algorithm. Comparison of the proposed algorithm with well-known techniques in terms of Cramer Rao lower bound and computational complexities shows high accuracy and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, J., Zhao, H., Sun, X., & Liu, G. (2014). Joint 2D Direction-of-Arrival and Range Estimation for Nonstationary Sources. International Journal of Antennas and Propagation, 2014.

  2. Bekkerman, I., & Tabrikian, J. (2006). Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing, 54(10), 3873–3883.

    Article  Google Scholar 

  3. Kim, C., & Lee, J.-Y. (2014). ToA-based multi-target localization and respiration detection using UWB radars. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1–15.

    Article  Google Scholar 

  4. Chen, Z., Sun, J., & Hou, H. (2010). Phase difference method for DOA estimation. Journal of Marine Science and Application, 9(4), 445–450.

    Article  Google Scholar 

  5. Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: the parametric approach. Signal Processing Magazine, IEEE, 13(4), 67–94.

    Article  Google Scholar 

  6. Chevalier, P., Ferréol, A., & Albera, L. (2006). High-resolution direction finding from higher order statistics: The < img src = ‘/images/tex/330. gif’ alt = ‘2 rm q’ > -MUSIC Algorithm. IEEE Transactions on Signal Processing, 54(8), 2986–2997.

    Article  Google Scholar 

  7. Wang, Z., Sinha, A., Willett, P., & Bar-shalom, Y. (2004). Angle estimation for two unresolved targets with monopulse radar. IEEE Transactions on Aerospace and Electronic Systems, 40(3), 998–1019.

    Article  Google Scholar 

  8. Chen, J. C., Hudson, R. E., & Yao, K. (2002). Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field. IEEE Transactions on Signal Processing, 50(8), 1843–1854.

    Article  Google Scholar 

  9. Farina, A., Gierull, C. H., Gini, F., & Nickel, U. R. O. (2004). New trends and findings in antenna array processing for radar. Signal Processing, 84(9), 1477–1480.

    Article  MATH  Google Scholar 

  10. Li, J., & Zhang, X. (2013). Closed-form blind 2D-DOD and 2D-DOA estimation for MIMO radar with arbitrary arrays. Wireless Personal Communications, 69(1), 175–186.

    Article  Google Scholar 

  11. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  12. Manikas, A., Alexiou, A., & Karimi, H. R. (1997). Comparison of the ultimate direction-finding capabilities of a number of planar array geometries. Radar, Sonar and Navigation, IEE Proceedings, 144(6), 321–329.

    Article  Google Scholar 

  13. Ober, P. B., Deprettere, E. F., & Van der Veen A.-J. (1991). Efficient methods to compute azimuth and elevation in high resolution DOA estimation. In Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, (pp. 3349–3352).

  14. Sasaki, K., Yukumatsu, M., Saito, T., Matsuki, H., & Hazumi, H. (1998). Planar array antenna and phase-comparison monopulse radar system. Google Patents.

  15. Spong, R. N. (1999). An efficient method for computing azimuth and elevation angle estimates from monopulse ratio measurements of a phased array pencil beam radar with two-dimensional angle steering. In Radar Conference, 1999. The Record of the 1999 IEEE, (pp. 309–314).

  16. Kanter, I. (1977). Multiple gaussian targets: The track-on-jam problem. IEEE Transactions on Aerospace and Electronic Systems, 6, 620–623.

    Article  Google Scholar 

  17. Sherman, S. M., & Barton, D. K. (2011). Monopulse principles and techniques. Norwood: Artech House.

    Google Scholar 

  18. Baur, K., Mayer, M., Lutz, S., & Walter, T. (2013). Angular measurements in azimuth and elevation with 77 GHz radar sensors. International Journal of Microwave and Wireless Technologies, 5(01), 35–42.

    Article  Google Scholar 

  19. Pepin, M. (2015). Joint azimuth and elevation localization estimates in 3D Synthetic Aperture Radar scenarios. In SPIE Defense + Security, (pp. 94750B–94750B).

  20. Swerling, P. (1956). Maximum angular accuracy of a pulsed search radar. Proceedings of the IRE, 44(9), 1146–1155.

    Article  Google Scholar 

  21. Farina, A., Gini, F., & Greco, M. (2002). DOA estimation by exploiting the amplitude modulation induced by antenna scanning. IEEE Transactions on Aerospace and Electronic Systems, 38(4), 1276–1286.

    Article  Google Scholar 

  22. Gini, F., Greco, M., Farina, A., & Gubinelli, M. (2003). Asymptotic maximum likelihood estimation of multiple radar targets. In Radar Conference, 2003. Proceedings of the 2003 IEEE, (pp. 302–309).

  23. Ushio, T., Shimamura, S., Wu, T., Kikuchi, H., Yoshikawa, E., Mizutani, F., Wada, M., Satoh, S., & Iguchi, T. (2014). Development and observation of the phased array radar at X band. In General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI, (pp. 1–4).

  24. Parker, D., & Zimmermann, D. C. (2002). Phased arrays-part II: Implementations, applications, and future trends. IEEE Transactions on Microwave Theory and Techniques, 50(3), 688–698.

    Article  Google Scholar 

  25. Skolnik, M. I. (1962). Introduction to radar. In F. J. Cerra (Ed.), Radar Handbook (2nd ed.). Singapore: McGraw-Hill Book.

  26. Richards, M. A. (2005). Fundamentals of radar signal processing. Noida: Tata McGraw-Hill Education.

    Google Scholar 

  27. Kay, S. M. (1993). Fundamentals of signal processing-estimation theory. Englandwood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  28. Fenn, A. J., Temme, D. H., Delaney, W. P., & Courtney, W. E. (2000). The development of phased-array radar technology. Lincoln Laboratory Journal, 12(2), 321–340.

    Google Scholar 

  29. Madurasinghe, D., & Shaw, A. P. (2010). Fully adaptive clutter suppression for airborne multichannel phase array radar using a single A/D converter. EURASIP Journal on Advances in Signal Processing, 2010, 79.

    Article  Google Scholar 

  30. Baig, N. A., & Malik, M. B. (2013). Comparison of direction of arrival (DOA) estimation techniques for closely spaced targets. International Journal of Future Computer and Communication, 2(6), 654.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Anwar Baig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, N.A., Malik, M.B. 2-D Direction-of-Arrival: Estimation of Azimuth and Elevation by Exploiting the Amplitude Modulation Induced by Antenna’s Mechanical and Electronic Scan. Wireless Pers Commun 90, 143–155 (2016). https://doi.org/10.1007/s11277-016-3336-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3336-3

Keywords

Navigation