Skip to main content
Log in

5G assisted GNSS precise point positioning ambiguity resolution

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This study proposes a model using 5G time-of-arrival data to assist global navigation satellite system precise point positioning ambiguity resolution. Specifically, the model addresses the problem of PPP requiring a long convergence time in partially satellite-occluded GNSS environments, such as urban canyons. First, we apply the ionosphere-free PPP model to estimate uncalibrated phase delays. Next, we combine real 5G data with GNSS data to determine whether introducing 5G observations will decrease the convergence time of the PPP solution. Experimental results reveal that the 5G-assisted PPP model can effectively improve the convergence efficiency of the float solution, lower the fixed time, and achieve greater positional reliability. Notably, the combination of GPS, BDS, and 5G with a sampling interval of 1 s obtains a fixed solution in an average of 1.12 min. Moreover, 5G-assisted GNSS positioning effectively compensates for partial satellite occlusion, optimizes the PDOP value, and speeds up ambiguity fixing. The introduction of three and more 5G base stations helps to obtain fixed solutions within 9 min when it is difficult to obtain fixed solutions relying only on GNSS. Our findings have important implications for improving the widespread applicability and effectiveness of satellite-based navigation systems in light of increasing urbanization and the rise of signal-occluding environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abu-Shaban Z, Seco-Granados G, Benson CR, Wymeersch H, & Ieee. (2020). Performance Analysis for Autonomous Vehicle 5G-Assisted Positioning in GNSS-Challenged Environments. In: IEEE-ION Position Location and Navigation Symposium [2020 ieee/ion position, location and navigation symposium (plans)]. IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR.

  • Bai L, Sun C, Dempster AG, Zhao H, Cheong JW, Feng W (2022) GNSS-5G hybrid positioning based on multi-rate measurements fusion and proactive measurement uncertainty prediction. IEEE Trans Instrument Measure 71:1–15. https://doi.org/10.1109/tim.2022.3154821

    Article  Google Scholar 

  • Cai CS, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut 17(2):223–236. https://doi.org/10.1007/s10291-012-0273-9

    Article  Google Scholar 

  • Collins P, Ion. (2008). Isolating and Estimating Undifferenced GPS Integer Ambiguities. [Proceedings of the 2008 national technical meeting of the institute of navigation - ntm 2008]. 2008 National Technical Meeting of the Institute-of-Navigation, San Diego, CA.

  • Defraigne P, Baire Q (2011) Combining GPS and GLONASS for time and frequency transfer. Adv Space Res 47(2):265–275. https://doi.org/10.1016/j.asr.2010.07.003

    Article  Google Scholar 

  • del Peral-Rosado JA, Saloranta J, Destino G, López-Salcedo JA, Seco-Granados G (2018) Methodology for simulating 5G and GNSS high-accuracy positioning. Sensors 18(10):3220. https://doi.org/10.3390/s18103220

    Article  Google Scholar 

  • Du Y, Wang J, Rizos C, El-Mowafy A (2021) Vulnerabilities and integrity of precise point positioning for intelligent transport systems: overview and analysis. Satell. Navig. 2:1–22

    Article  Google Scholar 

  • Duong PB, Ghimire B, Dietmayer K, Ali SU, Al Kim H, Seitz J, & Ieee. (2022, Sep 05–07). Supervised Machine Learning Assisted Hybrid Positioning based on GNSS and 5G. International Conference on Indoor Positioning and Indoor Navigation [2022 ieee 12th international conference on indoor positioning and indoor navigation (ipin 2022)]. In: 12th IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, PEOPLES R CHINA.

  • Dwivedi S, Shreevastav R, Munier F, Nygren J, Siomina I, Lyazidi Y, Shrestha D, Lindmark G, Ernstrom P, Stare E, Razavi SM, Muruganathan S, Masini G, Busin A, Gunnarsson F (2021) Positioning in 5G networks. IEEE Commun Mag 59(11):38–44. https://doi.org/10.1109/mcom.011.2100091

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J Geodesy 82(7):389–399. https://doi.org/10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Geng JH, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solutions 13(4):263–270. https://doi.org/10.1007/s10291-009-0119-2

    Article  Google Scholar 

  • Geng JH, Meng XL, Dodson AH, Teferle FN (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geodesy 84(9):569–581. https://doi.org/10.1007/s00190-010-0399-x

    Article  Google Scholar 

  • Geng JH, Chen XY, Pan YX, Zhao QL (2019) A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University. J Geodesy 93(10):2053–2067. https://doi.org/10.1007/s00190-019-01301-6

    Article  Google Scholar 

  • Glaner M, Weber R (2021) PPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centers. GPS Solut 25(3):102. https://doi.org/10.1007/s10291-021-01140-z

    Article  Google Scholar 

  • Guo F, Zhang XH, Wang JL, Ren XD (2016) Modeling and assessment of triple-frequency BDS precise point positioning. J Geodesy 90(11):1223–1235. https://doi.org/10.1007/s00190-016-0920-y

    Article  Google Scholar 

  • Hein GW (2020) Status, perspectives and trends of satellite navigation. Satell Navig 1(1):1–12

    Article  Google Scholar 

  • Hemadeh IA, Satyanarayana K, El-Hajjar M, Hanzo L (2018) Millimeter-wave communications: physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun Surv Tutor 20(2):870–913. https://doi.org/10.1109/comst.2017.2783541

    Article  Google Scholar 

  • Jin S, Su K (2020) PPP models and performances from single-to quad-frequency BDS observations. Satell Navig 1(1):16. https://doi.org/10.1186/s43020-020-00014-y

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149

    Article  Google Scholar 

  • Li FX, Tu R, Han JQ, Zhang Y, Hong J (2021) Indoor location algorithm of TDOA based on 5G. Gnss World China 46(2):1008–9268

    Google Scholar 

  • Li F, Tu R, Hong J, Zhang S, Zhang P, Lu X (2022) Combined positioning algorithm based on BeiDou navigation satellite system and raw 5G observations. Measurement 190:110763. https://doi.org/10.1016/j.measurement.2022.110763

    Article  Google Scholar 

  • Li FX, Tu R, Han JQ, Zhang SX, Liu MY, Lu XC (2023a) Performance research of real-time kinematic/5G combined positioning model. Measure Sci Technol 34(3):035115. https://doi.org/10.1088/1361-6501/aca8c3

    Article  CAS  Google Scholar 

  • Li FX, Tu R, Zeng LC, Zhang SX, Liu MY, Lu XC (2023b) Integrated positioning with double-differenced 5G and undifferenced/double-differenced GPS. Measurement 218:113114. https://doi.org/10.1016/j.measurement.2023.113114

    Article  Google Scholar 

  • Lu J, Ding WY, Wang W, Hu EW, Wu JF (2023) A new hybrid positioning method by fusion of BDS and 5G signal using the particle swarm method. Appl Sci-Basel 13(1):366. https://doi.org/10.3390/app13010366

    Article  CAS  Google Scholar 

  • Maletic N, Sark V, Ehrig M, Gutierrez J, Grass E, & Ieee. (2019). Experimental evaluation of round-trip tof-based localization in the 60 GHz Band. In: International Conference on Indoor Positioning and Indoor Navigation [2019 international conference on indoor positioning and indoor navigation (ipin)]. 10th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, ITALY.

  • Melbourne W (1985). The case for ranging in GPS-based geodetic systems[C]. In: Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Rockville, USA

  • Naciri N, Bisnath S (2021) An uncombined triple-frequency user implementation of the decoupled clock model for PPP-AR. J Geodesy 95(5):60. https://doi.org/10.1007/s00190-021-01510-y

    Article  Google Scholar 

  • Navarro-Ortiz J, Romero-Diaz P, Sendra S, Ameigeiras P, Ramos-Munoz JJ, Lopez-Soler JM (2020) A survey on 5G usage scenarios and traffic models. IEEE Commun Surv Tutor 22(2):905–929. https://doi.org/10.1109/comst.2020.2971781

    Article  Google Scholar 

  • Pan L, Zhang XH, Liu JN (2019) A comparison of three widely used GPS triple-frequency precise point positioning models. Gps Solut 23(4):121. https://doi.org/10.1007/s10291-019-0914-3

    Article  Google Scholar 

  • Qi SF, Guo C, Guo WF, Deng CL, Liu JN (2023) Structure and performance analysis of fusion positioning system with a single 5G station and a single GNSS satellite. Geo-Spatial Inform Sci 26(1):94–106. https://doi.org/10.1080/10095020.2022.2144481

    Article  Google Scholar 

  • Rocken C, Johnson J, Van Hove T, Iwabuchi T (2005) Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophys Res Lett 32(12):L12813. https://doi.org/10.1029/2005gl022573

    Article  Google Scholar 

  • Saleh S, El-Wakeel AS, Noureldin A (2022) 5G-enabled vehicle positioning using EKF With dynamic covariance matrix tuning positionnement de vehicules a l’aide de la 5G utilisant un EKF avec reglage dynamique de la matrice de covariance. IEEE Canadian J Electr Comput Eng 45(3):192–198. https://doi.org/10.1109/icjece.2022.3187348

    Article  Google Scholar 

  • Shafi M, Molisch AF, Smith PJ, Haustein T, Zhu PY, De Silva P, Tufvesson F, Benjebbour A, Wunder G (2017) 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J Sel Areas Commun 35(6):1201–1221. https://doi.org/10.1109/jsac.2017.2692307

    Article  Google Scholar 

  • Wang YQ, Zhao BH, Zhang W, Li KM (2022) Simulation experiment and analysis of GNSS/INS/LEO/5G integrated navigation based on federated filtering algorithm [Article]. Sensors 22(2):30. https://doi.org/10.3390/s22020550

    Article  Google Scholar 

  • Wubbena G (1985). Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements[C]. In: Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Rockville, USA

  • Xu H, Angrisano A, Gaglione S, Hsu L-T (2020) Machine learning based LOS/NLOS classifier and robust estimator for GNSS shadow matching. Satell Navig 1(1):15. https://doi.org/10.1186/s43020-020-00016-w

    Article  Google Scholar 

  • Yin L, Ni Q, Deng ZL (2018) A GNSS/5G integrated positioning methodology in D2D communication networks. IEEE J Sel Areas Commun 36(2):351–362. https://doi.org/10.1109/jsac.2018.2804223

    Article  Google Scholar 

  • Yin L, Cao JM, Lin KQ, Deng ZL, Ni Q (2019) A Novel positioning-communication integrated signal in wireless communication systems. IEEE Wirel Commun Lett 8(5):1353–1356. https://doi.org/10.1109/lwc.2019.2917670

    Article  Google Scholar 

  • Zhang XH, Andersen OB (2006) Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning. J Geodesy 80(4):171–176. https://doi.org/10.1007/s00190-006-0062-8

    Article  Google Scholar 

  • Zhang X, Li P, Zhu F (2012) Estimation and analysis for widelane carrier phase fractional bias of satellite. Geomat Inform Sci Wuhan Univ 37(10):1177

    Google Scholar 

  • Zhang W, Yang YX, Zeng AM, Xu YY (2022) A GNSS/5G integrated three-dimensional positioning scheme based on D2D communication [Article]. Remote Sens 14(6):20. https://doi.org/10.3390/rs14061517

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No: 41974032, 42274019).

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, 41974032, rui tu, 42274019, rui tu

Author information

Authors and Affiliations

Authors

Contributions

Fangxin Li and Rui Tu provided the initial idea for this work and write this manuscript; Fangxin Li designed the algorithm. Fangxin Li, Rui Tu and Pengfei Zhang, Rui Zhang contributed to the analyses of results. Lihong Fan, Siyao Wang and Xiaochun Lu contributed to the collection and analysis of field test data. Fangxin Li and Rui Tu plotted these graphs.

Corresponding author

Correspondence to Rui Tu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Tu, R., Zhang, P. et al. 5G assisted GNSS precise point positioning ambiguity resolution. J Geod 98, 36 (2024). https://doi.org/10.1007/s00190-024-01850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-024-01850-5

Keywords

Navigation