Skip to main content

Advertisement

Log in

Surface Wave Dispersion Measurement with Polarization Analysis Using Multicomponent Seismic Noise Recorded by a 1-D Linear Array

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Linear arrays are popularly used for passive surface wave imaging due to their high efficiency and convenience, especially in urban applications. The unknown characteristics such as azimuth of noise sources, however, make it challenging to extract accurate phase-velocity dispersion information by employing a 1-D linear array. To solve this problem, we proposed an alternative passive surface wave method to capture the dominant azimuth of noise sources and retrieve the phase-velocity dispersion curve by polarization analysis with multicomponent ambient noise records. We verified the proposed method using synthetic data sets under various source distributions. According to the calculated dominant azimuth, it is deduced that noise sources are mainly classified as either inline or offline distribution. For inline noise source distribution, we are able to directly obtain the unbiased phase-velocity measurements; for offline noise source distribution, we should correct the velocity overestimation due to azimuthal effects using the proposed method. Results from two field examples show that the distributions of noise sources are predominantly offline. We eliminated the velocity bias caused by offline source distribution and picked phase velocities following higher amplitude peaks along the trend. After the azimuthal correction, the picked phase-velocity dispersion curves in dispersion images generated from passive source data match well with those from active source data, demonstrating the practicability of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ajo-Franklin JB, Dou S, Lindsey NJ, Monga I, Tracy C, Robertson M, Tribaldos VR, Ulrich C, Freifeld B, Daley T, Li X (2019) Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to micro-tremors. Bull Earthq Res Inst 35:415–456

    Google Scholar 

  • Aleardi M, Salusti A, Pierini S (2020) Transdimensional and Hamiltonian Monte Carlo inversions of Rayleigh-wave dispersion curves: a comparison on synthetic datasets. Near Surf Geophys 18:515–543

    Article  Google Scholar 

  • Asten MW (1978) Geological control on the three-component spectra of Rayleigh-wave microseisms. Bull Seismol Soc Am 68:1623–1636

    Google Scholar 

  • Asten MW (2006) On bias and noise in passive seismic data from finite circular array data processed using SPAC methods. Geophysics 71(6):V153–V162

    Article  Google Scholar 

  • Asten MW, Hayashi K (2018) Application of the spatial auto-correlation method for shear-wave velocity studies using ambient noise. Surv Geophys 39:633–659

    Article  Google Scholar 

  • Baglari D, Dey A, Taipodia J (2020) A critical insight into the influence of data acquisition parameters on the dispersion imaging in passive roadside MASW survey. J Appl Geophys 183:104223

    Article  Google Scholar 

  • Baker GE, Stevens JL (2004) Backazimuth estimation reliability using surface wave polarization. Geophys Res Lett 31:L09611

    Article  Google Scholar 

  • Barone I, Boaga J, Carrera A, Flores-Orozco A, Cassiani G (2021) Tackling lateral variability using surface waves: a tomography-like approach. Surv Geophys 42:317–338

    Article  Google Scholar 

  • Behm M, Leahy GM, Snieder R (2014) Retrieval of local surface wave velocities from traffic noise-an example from the La Barge basin (Wyoming). Geophys Prospect 62:223–243

    Article  Google Scholar 

  • Behr Y, Townend J, Bowen M, Carter L, Gorman R, Brooks L, Bannister S (2013) Source directionality of ambient seismic noise inferred from three-component beamforming. J Geophys Res Solid Earth 118:240–248

    Article  Google Scholar 

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratio: a tool for site effects evaluation. results from 1-D noise simulations. Geophys J Int 167:827–837

    Article  Google Scholar 

  • Boschi L, Weemstra C (2015) Stationary-phase integrals in the cross correlation of ambient noise. Rev Geophys 53:411–451

    Article  Google Scholar 

  • Cardarelli E, Cercato M, De Donno G (2014) Characterization of an earth-filled dam through the combined use of electrical resistivity tomography, P- and SH-wave seismic tomography and surface wave data. J Appl Geophys 106:87–95

    Article  Google Scholar 

  • Carrière O, Gerstoft P, Hodgkiss WS (2014) Spatial filtering in ambient noise interferometry. J Acoust Soc Am 135:1186–1196

    Article  Google Scholar 

  • Chávez-García FJ, Rodríguez M, Stephenson WR (2006) Subsoil structure using SPAC measurements along a line. Bull Seismol Soc Am 96(2):729–736

    Article  Google Scholar 

  • Chen X, Zhang H, Zhou C, Pang J, Xing H, Chang X (2021) Using ambient noise tomography and MAPS for high resolution stratigraphic identification in Hangzhou urban area. J Appl Geophys 189:104327

    Article  Google Scholar 

  • Cheng F, Xia J, Xu Y, Xu Z, Pan Y (2015) A new passive seismic method based on seismic interferometry and multichannel of surface waves. J Appl Geophys 117:126–135

    Article  Google Scholar 

  • Cheng F, Xia J, Xu Z, Hu Y, Mi B (2018) FK-based data selection in high-frequency passive surface wave survey. Surv Geophys 39:661–682

    Article  Google Scholar 

  • Cheng F, Xia J, Luo Y, Xu Z, Wang L, Shen C, Liu R, Pan Y, Mi B, Hu Y (2016) Multichannel analysis of passive surface waves based on crosscorrelations. Geophysics 81(5):EN57–EN66

    Article  Google Scholar 

  • Chevrot S, Sylvander M, Benahmed S, Ponsolles C, Lefèvre JM, Paradis D (2007) Source locations of secondary microseisms in western Europe: evidence for both coastal and pelagic sources. J Geophys Res 112:B11301

    Google Scholar 

  • Cho I (2020) Two-sensor microtremor SPAC method: potential utility of imaginary spectrum components. Geophys J Int 220:1735–1747

    Google Scholar 

  • Claerbout J (1968) Synthesis of a layered medium from its acoustic transmission response. Geophysics 33(2):264–269

    Article  Google Scholar 

  • Dal Moro G, Pipan M, Gabrielli P (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61:39–55

    Article  Google Scholar 

  • Dangwal D, Behm M (2021) Interferometric body-wave retrieval from ambient noise after polarization filtering: application to shallow reflectivity imaging. Geophysics 86(6):Q47–Q58

    Article  Google Scholar 

  • Datta A, Hanasoge S, Goudswaard J (2019) Finite-frequency inversion of cross-correlation amplitudes for ambient noise source directivity estimation. J Geophys Res Solid Earth 124:6653–6665

    Article  Google Scholar 

  • Derode A, Larose E, Tanter M, Rosny JD, Tourin A, Campillo M, Fink M (2003) Recovering the Green’s function from field-field correlations in an open scattering medium (L). J Acoust Soc Am 113(6):2973–2976

    Article  Google Scholar 

  • Dou S, Lindsey N, Wagner AM, Daley TM, Freifeld B, Robertson M, Peterson J, Ulrich C, Martin ER, Ajo-Franklin JB (2017) Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Draganov D, Campman X, Thorbecke J, Verdel A, Wapenaar K (2013) Seismic exploration-scale velocities and structure from ambient seismic noise. J Geophys Res 118:4345–4360

    Article  Google Scholar 

  • Fang G, Li YE, Zhao Y, Martin ER (2020) Urban near-surface seismic monitoring using distributed acoustic sensing. Geophys Res Lett 47:e2019GL086115

    Article  Google Scholar 

  • Fenta MC, Potter DK, Szanyi J (2021) Fibre optic methods of prospecting: a comprehensive and modern branch of geophysics. Surv Geophys 42:551–584

    Article  Google Scholar 

  • Fichtner A (2015) Source-structure trade-offs in ambient noise correlations. Geophys J Int 202:678–694

    Article  Google Scholar 

  • Forbriger T (2003) Inversion of shallow-seismic wavefields: I. Wavefield transformation. Geophys J Int 153:719–734

    Article  Google Scholar 

  • Foster A, Ekström G, Nettles M (2014) Surface wave phase velocities of the Western United States from a two-station method. Geophys J Int 196:1189–1206

    Article  Google Scholar 

  • Guan B, Mi B, Zhang H, Liu Y, Xi C, Zhou C (2021) Selection of noise sources and short-time passive surface wave imaging - A case study on fault investigation. J Appl Geophys 194:104437

    Article  Google Scholar 

  • Halliday D, Curtis A (2008) Seismic interferometry, surface waves and source distribution. Geophys J Int 175:1067–1087

    Article  Google Scholar 

  • Halliday D, Curtis A, Kragh E (2008) Seismic surface waves in a suburban environment: active and passive interferometric methods. Leading Edge 27:210–218

    Article  Google Scholar 

  • Harmon N, Rychert C, Gerstoft P (2010) Distribution of noise sources for seismic interferometry. Geophys J Int 183:1470–1484

    Article  Google Scholar 

  • Hayashi K, Martin A, Hatayama K, Kobayashi T (2013) Estimating deep S-wave velocity structure in the Los Angeles Basin using a passive surface-wave method. Leading Edge 32:620–626

  • Herrmann RB (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 84:1081–1088

    Article  Google Scholar 

  • Hu S, Luo S, Yao H (2020) The frequency-Bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise. J Geophys Res Solid Earth 125:e202001JB9630

    Article  Google Scholar 

  • Ikeda T, Matsuoka T, Tsuji T, Nakayama T (2015) Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves. Geophysics 80(1):EN1–EN11

    Article  Google Scholar 

  • Koper KD, Hawley V (2010) Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States. Earthq Sci 23:439–447

    Article  Google Scholar 

  • Le Feuvre M, Joubert A, Leparoux D, Côte P (2015) Passive multi-channel analysis of surface waves with cross-correlations and beamforming. Application to a sea dike. J Appl Geophys 114:36–51

    Article  Google Scholar 

  • Li Z, Chen X (2020) An effective method to extract overtones of surface wave from array seismic records of earthquake events. J Geophys Res Solid Earth 125:e2019JB018511

    Article  Google Scholar 

  • Lin F, Moschetti MP, Ritzwoller MH (2008) Surface-wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int 173:281–298

    Article  Google Scholar 

  • Lindsey NJ, Martin ER (2021) Fiber-optic seismology. Annu Rev Earth Planet Sci 49:309–336

    Article  Google Scholar 

  • Lindsey NJ, Martin ER, Dreger DS, Freifeld B, Cole S, James SR, Biondi BL, Ajo-Franklin JB (2017) Fiber-optic network observations of earthquake wavefields. Geophys Res Lett 44(23):11792–11799

    Article  Google Scholar 

  • Liu Y, Xia J, Cheng F, Xi C, Shen C, Zhou C (2020) Pseudo-linear-array analysis of passive surface waves based on beamforming. Geophys J Int 221:640–650

    Article  Google Scholar 

  • Liu Y, Xia J, Xi C, Dai T, Ning L (2021) Improving the retrieval of high-frequency surface waves from ambient noise through multichannel-coherency-weighted stack. Geophys J Int 227(2):776–785

    Article  Google Scholar 

  • Lobkis OI, Weaver RL (2001) On the emergence of the Green’s function in the correlations of diffuse field. J Acoust Soc Am 110:3011

    Article  Google Scholar 

  • Louie JN (2001) Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seismol Soc Am 91:347–364

    Article  Google Scholar 

  • McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wave field transformation. Geophysics 46(6):869–874

    Article  Google Scholar 

  • Mi B, Xia J, Tian G, Shi Z, Xing H, Chang X, Xi C, Liu Y, Ning L, Dai T, Pang J, Chen X, Zhou C, Zhang H (2022) Near-surface imaging from traffic-induced surface waves with dense linear arrays: an application in the urban area of Hangzhou, China. Geophysics 87(2):B145–B158

    Article  Google Scholar 

  • Mi B, Hu Y, Xia J, Socco LV (2019) Estimation of horizontal-to-vertical spectral ratios (ellipticity) of Rayleigh waves from multistation active-seismic records. Geophysics 84(6):EN81–EN92

    Article  Google Scholar 

  • Morton SL, Ivanov J, Peterie SL, Miller RD, Livers-Douglas AJ (2021) Passive multichannel analysis of surface waves using 1D and 2D receiver arrays. Geophysics 86:EN63–EN75

    Article  Google Scholar 

  • Moschetti MP, Ritzwoller MH, Shapiro NM (2007) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochem Geophys Geosyst 8:Q08010

    Article  Google Scholar 

  • Nakata N, Snieder R, Tsuji T, Larner K, Matsuoka T (2011) Shear wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics 76:SA97–SA106

    Article  Google Scholar 

  • Nazarian S, Stokoe KH II, Hudson WR (1983) Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems. Transport Res Record No 930:38–45

    Google Scholar 

  • Ning L, Dai T, Liu Y, Xi C, Zhang H, Zhou C (2021) Application of multichannel analysis of passive surface waves method for fault investigation. J Appl Geophys 192:104382

    Article  Google Scholar 

  • Ning L, Xia J, Dai T, Liu Y, Zhang H, Xi C (2022) High-frequency surface-wave imaging from traffic-induced noise by selecting inline sources. Surv Geophys 43:1873–1899

  • Pang J, Cheng F, Shen C, Dai T, Ning L, Zhang K (2019) Automatic passive data selection in time domain for imaging near-surface surface waves. J Appl Geophys 162:108–117

    Article  Google Scholar 

  • Pang J, Xia J, Zhou C, Chen X, Cheng F, Xing H (2022) Common-midpoint two-station analysis of estimating phase velocity using high-frequency ambient noise. Soil Dyn Earthq Eng 159:107356

    Article  Google Scholar 

  • Pang J, Xia J (2022) Datasets for passive surface wave measurement with polarization analysis of field experiments in Hangzhou urban area. Mendeley Data. https://doi.org/10.17632/d4wb254zyw.1

    Article  Google Scholar 

  • Park CB, Miller RD (2008) Roadside passive multichannel analysis of surface waves (MASW). J Eng Environ Geophys 13(1):1–11

    Article  Google Scholar 

  • Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808

    Article  Google Scholar 

  • Park CB, Miller RD, Xia J (1998) Imaging dispersion curves of surface waves on multi-channel record. SEG Expanded Abstracts.

  • Park CB, Miller RD, Xia J, Ivanov J (2004) Imaging dispersion curves of passive surface waves. SEG Expanded Abstracts.

  • Perelberg AI, Hornbostel SC (1994) Applications of seismic polarization analysis. Geophysics 59(1):119–130

    Article  Google Scholar 

  • Quiros DA, Brown LD, Kim D (2016) Seismic interferometry of railroad induced ground motions: body and surface wave imaging. Geophys J Int 205:301–313

    Article  Google Scholar 

  • Rahimi S, Wood CM, Teague DP (2021) Performance of different transformation techniques for MASW data processing considering various site conditions, near-field effects, and modal separation. Surv Geophys 42:1197–1225

    Article  Google Scholar 

  • Rix GJ, Hebeler GL, Orozco MC (2002) Near-surface Vs profiling in the New Madrid seismic zone using surface-wave methods. Seismol Res Lett 73(3):380–392

    Article  Google Scholar 

  • Rost S, Thomas C (2002) Array seismology: methods and applications. Rev Geophy 40:1008

  • Roux P (2009) Passive seismic imaging with directive ambient noise: application to surface waves and the San Andreas fault in Parkfield, CA. Geophys J Int 179:367–373

    Article  Google Scholar 

  • Sabra KG, Gerstoft P, Roux P, Kuperman WA (2005) Surface wave tomography from microseisms in southern California. Geophys Res Lett 32:L14311

    Article  Google Scholar 

  • Sager K, Ermert L, Boelm C, Fichtner A (2018) Towards full waveform ambient noise inversion. Geophys J Int 212:566–590

    Article  Google Scholar 

  • Schimmel M, Stutzmann E, Ardhuin F, Gallart J (2011) Polarized earth’s ambient microseismic noise. Geochem Geophys Geosyst 12:Q07014

    Article  Google Scholar 

  • Schulte-Pelkum V (2004) Strong directivity of ocean-generated seismic noise. Geochem Geophys Geosyst 5:Q03004

    Article  Google Scholar 

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07614

    Article  Google Scholar 

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618

    Article  Google Scholar 

  • Shen W, Ritzwoller MH (2016) Crustal and uppermost mantle structure beneath the United States. J Geophys Res 121:4306–4342

    Article  Google Scholar 

  • Shirzad T, Safarkhani M, Assumpção MS (2022) Extracting reliable empirical Green’s functions using weighted cross-correlation functions of ambient seismic noise in west-central and southern Brazil. Geophys J Int 230:1441–1464

    Article  Google Scholar 

  • Snieder R, Wapenaar K, Larner K (2006) Spurious multiples in seismic interferometry of primaries. Geophysics 71(4):SI111–SI124

    Article  Google Scholar 

  • Socco LV, Foti S, Boiero D (2010) Surface wave analysis for building near surface velocity models: established approaches and new perspectives. Geophysics 75(5):75A83-75A102

    Article  Google Scholar 

  • Socco LV, Strobbia C (2004) Surface-wave method for near-surface characterization: a tutorial. Near Surf Geophys 2(4):165–185

    Article  Google Scholar 

  • Song Z, Zeng X, Xie J, Bao F, Zhang G (2021) Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area. Surv Geophys 42:1401–1423

    Article  Google Scholar 

  • Song YY, Castagna JP, Black RA, Knapp RW (1989) Sensitivity of near-surface shear-wave velocity determination from Rayleigh and Love waves. Technical Program with Biographies SEG 59th Annual Meeting Dallas Texas. pp 509–512

  • Spica Z, Perton M, Martin ER, Beroza G, Biondi B (2020) Urban seismic site characterization by fiber-optic seismology. J Geophys Res Solid Earth 125:e2019JB018656

    Article  Google Scholar 

  • Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long range correlation properties. J Geophys Res 111:B1306-1-B1306-12

    Google Scholar 

  • Stokoe II KH, Nazarian S (1983) Effectiveness of ground improvement from spectrum analysis of surface waves. In: 8th Euro Conf on Soil Mech and Found Engin. Proceedings

  • Suemoto Y, Ikeda T, Tsuji T (2020) Temporal variation and frequency dependence of seismic ambient noise on Mars from polarization analysis. Geophys Res Lett 47:e2020GL087123

    Article  Google Scholar 

  • Takagi R, Nishida K, Maeda T, Obara K (2018) Ambient seismic noise wavefield in Japan characterized by polarization analysis of Hi-net records. Geophys J Int 215:1682–1699

    Article  Google Scholar 

  • Tanimoto T, Ishimaru S, Alvizuri C (2006) Seasonality in particle motion of microseisms. Geophys J Int 166:253–266

    Article  Google Scholar 

  • Tromp J, Luo Y, Hanasoge S, Peter D (2010) Noise cross-correlation sensitivity kernels. Geophys J Int 183:791–819

    Article  Google Scholar 

  • Wang J, Wu G, Chen X (2019) Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data. J Geophys Res: Solid Earth 124:3708–3723

    Article  Google Scholar 

  • Wapenaar K (2004) Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett 93(25):254301

    Article  Google Scholar 

  • Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71(4):SI33–SI46

    Article  Google Scholar 

  • Wathelet M, Jongmans D, Ohrnberger M (2004) Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf Geophys 2:211–221

    Article  Google Scholar 

  • Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHZ Frequencies. Phys Rev Lett 87:134301

    Article  Google Scholar 

  • Weaver RL, Yoritomo J (2018) Temporally weighting a time varying noise field to improve Green function retrieval. J Acoust Soc Am 143:3706–3719

    Article  Google Scholar 

  • Wood CM, Cox BR, Green RA, Wotherspoon LM, Bradley BA, Cubrinovski M (2017) Vs-based evaluation of select liquefaction case histories from the 2010–2011 Canterbury earthquake sequence. J Geotech Geoenviron Eng 143(9):04017066

    Article  Google Scholar 

  • Wu G, Dong H, Ke G, Song J (2020) An adapted eigenvalue-based filter for ocean ambient noise processing. Geophysics 85(1):KS29–KS38

    Article  Google Scholar 

  • Xi C, Xia J, Mi B, Dai T, Liu Y, Ning L (2021) Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise. Geophys J Int 225:1271–1280

    Article  Google Scholar 

  • Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64(3):691–700

    Article  Google Scholar 

  • Xia J, Miller RD, Park CB, Tian G (2003) Inversion of high frequency surface waves with fundamental and higher modes. J Appl Geophys 52:45–57

    Article  Google Scholar 

  • Xia J, Xu Y, Miller RD (2007) Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure Appl Geophys 164:941–956

    Article  Google Scholar 

  • Xia J, Xu Y, Luo Y, Miller RD, Cakir R, Zeng C (2012) Advantages of using multichannel analysis of Love waves (MALW) to estimate near-surface shear-wave velocity. Surv Geophys 33:841–860

    Article  Google Scholar 

  • Xia J, Cheng F, Xu Z, Liu R (2017) Advantages of Multi-channel Analysis of Passive Surface Waves (MAPS). In: International conference on engineering geophysics AI Ain United Arab Emirates: 94–97.

  • Xu Z, Mikesell TD, Gribler G, Mordret A (2019) Rayleigh-wave multicomponent cross-correlation-based source strength distribution inversion. Part 1: theory and numerical examples. Geophys J Int 218:1761–1780

    Article  Google Scholar 

  • Yang Y, Ritzwoller MH, Lin F, Moschetti MP, Shapiro NM (2008) Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J Geophys Res 113:B12310

    Google Scholar 

  • Yao H, Van der Hilst RD, de Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophys J Int 166:732–744

    Article  Google Scholar 

  • Zenhäusern G, Stähler S, Clinton J, Giardini D, Ceylan S, Garcia (2022) Low-frequency marsquakes and where to find them: back azimuth determination using a polarization analysis approach. Bull Seismol Soc Am 112:1787–1805

    Article  Google Scholar 

  • Zhang S, Chan L, Xia J (2004) The selection of field acquisition parameters for dispersion images from multichannel surface wave data. Pure Appl Geophys 161:185–201

    Article  Google Scholar 

  • Zhao Y, Niu F, Zhang Z, Li X, Chen J, Yang J (2021) Signal detection and enhancement for seismic crosscorrelation using the wavelet-domain Kalman filter. Surv Geophys 42:43–67

    Article  Google Scholar 

  • Zhou C, Xia J, Pang J, Cheng F, Cheng X, Xi C, Zhang H, Liu Y, Ning L, Dai T, Mi B, Zhou CW (2021) Near-surface geothermal reservoir imaging based on the customized dense seismic network. Surv Geophys 42:673–697

    Article  Google Scholar 

  • Zhou C, Xia J, Cheng F, Pang J, Chen X, Xing H, Chang X (2022) Passive surface-wave waveform inversion for source-velocity joint imaging. Surv Geophys 43:853–881

Download references

Acknowledgements

We appreciate the Editor in Chief Michael Rycroft and two anonymous reviewers for their constructive comments and suggestions. We thank Prof. Robert Herrmann for providing the Computer Programs in Seismology package and related scripts to generate the synthetic seismograms (https://www.eas.slu.edu/eqc/eqc_cps/TUTORIAL/HFAMBIENTNOISE/hfambientnoise). This study is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 41830103. Field datasets utilized in this study have been archived in Mendeley Data (Pang and Xia 2022).

Funding

This study was funded by the National Natural Science Foundation of China (Grant Number 41830103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghai Xia.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Following Takagi et al. (2018), we assume that Rayleigh waves are incident as plane waves on each seismic station; the multicomponent wavefields are represented by a superposition of incident plane waves as follows:

$$\begin{gathered} u_{Z} \left( f \right) = \mathop \smallint \limits_{ - \pi }^{\pi } {\text{d}}\varphi A_{{\text{R}}} \left( {\varphi ,f} \right) \hfill \\ u_{{\text{N}}} \left( f \right) = \mathop \smallint \limits_{ - \pi }^{\pi } {\text{d}}\varphi iH\left( f \right)A_{{\text{R}}} \left( {\varphi ,f} \right){\text{sin}}\varphi \hfill \\ u_{{\text{E}}} \left( f \right) = \mathop \smallint \limits_{ - \pi }^{\pi } {\text{d}}\varphi iH\left( f \right)A_{{\text{R}}} \left( {\varphi ,f} \right){\text{cos}}\varphi \hfill \\ \end{gathered}$$
(A1)

where f is frequency; \(u_{Z} \left( f \right)\), \(u_{{\text{N}}} \left( f \right)\) and \(u_{{\text{E}}} \left( f \right)\) are the Fourier spectra of the vertical, north and east wavefields, respectively; \(A_{{\text{R}}} \left( {\varphi ,f} \right)\) is the Fourier spectrum of the vertical wavefield of Rayleigh wave propagating in azimuth \(\varphi\); and \(H\left( f \right)\) is the horizontal-over-vertical ratio of the Rayleigh waves.

Takagi et al. (2018) assume that the incident waves are uncorrelated, which means that they satisfy

$$\left\langle {A_{{\text{R}}}^{*} \left( \varphi \right)A_{{\text{R}}} \left( {\varphi ^{\prime } } \right)} \right\rangle = \frac{{\left\langle {\left| {A_{{\text{R}}} \left( \varphi \right)} \right|^{2} } \right\rangle }}{{2\pi }}\delta \left( {\varphi - \varphi ^{\prime } } \right)$$
(A2)

where ⟨⟩ denotes the ensemble average and \(\delta\) is the Dirac delta function. \(\left\langle {\left| {A_{{\text{R}}} \left( \varphi \right)} \right|^{2} } \right\rangle\) is the azimuthal power spectrum, representing the power distribution of Rayleigh waves as a function of propagation azimuth. The azimuthal power spectrum using a Fourier series is expressed by

$$\left\langle {\left| {A_{{\text{R}}} \left( \varphi \right)} \right|^{2} } \right\rangle = a_{{{\text{R}}0}} + 2\sum\limits_{{m = 1}}^{\infty } {\left( {a_{{Rm}} \cos m\varphi + b_{{Rm}} \sin m\varphi } \right)}$$
(A3)

where \(a_{Rm}\) and \(b_{Rm}\) are the Fourier coefficients.

Using Eqs. (A1) and (A2), we can write the ensemble average of the vertical-horizontal cross-spectra \(u_{Z}^{*} u_{N}\)

$$\begin{gathered} u_{Z}^{*} u_{{\text{N}}} = \left\langle {\mathop \smallint \limits_{ - \pi }^{\pi } \mathop \smallint \limits_{ - \pi }^{\pi } {\text{d}}\varphi {\text{d}}\varphi^{\prime}iHA_{{\text{R}}}^{*} \left( \varphi \right)A_{{\text{R}}} \left( {\varphi^{\prime}} \right)\sin \varphi^{\prime}} \right\rangle \hfill \\ \quad \quad \quad = \mathop \smallint \limits_{ - \pi }^{\pi } \mathop \smallint \limits_{ - \pi }^{\pi } {\text{d}}\varphi {\text{d}}\varphi^{\prime}iH\left\langle {A_{{\text{R}}}^{*} \left( \varphi \right)A_{{\text{R}}} \left( {\varphi^{\prime}} \right)} \right\rangle \sin \varphi^{\prime} \hfill \\ \quad \quad \quad = \frac{iH}{{2\pi }}\mathop \smallint \limits_{ - \pi }^{\pi } {\text{d}}\varphi \left\langle {\left| {A_{{\text{R}}} \left( \varphi \right)} \right|^{2} } \right\rangle \sin \varphi \hfill \\ \end{gathered}$$
(A4)

and \(u_{Z}^{*} u_{E}\)

$$\begin{gathered} \left\langle {u_{Z}^{*} u_{{\text{E}}} } \right\rangle = \left\langle {\mathop \smallint \limits_{{ - \pi }}^{\pi } \mathop \smallint \limits_{{ - \pi }}^{\pi } {\text{d}}\varphi {\text{d}}\varphi ^{\prime}iHA_{{\text{R}}}^{*} \left( \varphi \right)A_{{\text{R}}} \left( {\varphi ^{\prime}} \right)\cos \varphi ^{\prime}} \right\rangle \hfill \\ ~~~~~~~~~~~~~~~ = \mathop \smallint \limits_{{ - \pi }}^{\pi } \mathop \smallint \limits_{{ - \pi }}^{\pi } {\text{d}}\varphi {\text{d}}\varphi ^{\prime}iH\left\langle {A_{{\text{R}}}^{*} \left( \varphi \right)A_{{\text{R}}} \left( {\varphi ^{\prime}} \right)} \right\rangle \cos \varphi ^{\prime} \hfill \\ ~ = \frac{{iH}}{{2\pi }}\mathop \smallint \limits_{{ - \pi }}^{\pi } {\text{d}}\varphi \left\langle {\left| {A_{{\text{R}}} \left( \varphi \right)} \right|^{2} } \right\rangle \cos \varphi \hfill \\ \end{gathered}$$
(A5)

Substituting Eq. (A3) into Eqs. (A4) and (A5), we obtain using the orthogonality relation of trigonometric functions

$$\begin{gathered} \left\langle {u_{Z}^{*} u_{N} } \right\rangle = iHb_{R1} \hfill \\ \left\langle {u_{Z}^{*} u_{E} } \right\rangle = iHa_{R1} \hfill \\ \end{gathered}$$
(A6)

Equation (A6) indicates that the imaginary parts of the averaged cross-spectra between the vertical and horizontal components are proportional to the first-order Fourier coefficients of the azimuthal power spectrum of the incident Rayleigh waves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Xia, J., Cheng, F. et al. Surface Wave Dispersion Measurement with Polarization Analysis Using Multicomponent Seismic Noise Recorded by a 1-D Linear Array. Surv Geophys 44, 1863–1895 (2023). https://doi.org/10.1007/s10712-023-09787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09787-8

Keywords

Navigation