Skip to main content

Advertisement

Log in

Visions Towards 5G: Technical Requirements and Potential Enablers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Compared to the previous generations of mobile networks, 5G will provide a significant paradigm shift by including beyond state of the art technical solutions, like very high carrier frequencies with massive bandwidths, extreme base station and device densities, and very high number of transceiver antennas. However, unlike the previous generations, it will also be highly integrative and backward compatible: combining the novel 5G air interface and spectrum together with legacy wireless systems like LTE/LTE-A and WiFi, in order to facilitate an umbrella of high-rate coverage and a seamless user experience. In order to support this advances in the radio interface, the core network will also have to reach unprecedented levels of elasticity and intelligence. Spectrum regulation will need to be rethought and significantly improved, whereas energy and cost efficiencies will become one of the key parameters that will steer the 5G design and development. This paper elaborates on the 5G related topics, identifying the key challenges for future research and preliminary 5G standardization activities, as well as providing a comprehensive survey of the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roh, W. (2014). 5G mobile communications for 2020 and beyond: Vision and key enabling technologies. Key note: at IEEE WCNC 2014.

  2. Cisco. (2014). VNI global mobile data traffic forecast 2013–2018. Technical Report, Cisco Inc.

  3. Cisco. (2013). Internet of everything: A \( \$4.6\) trillion public-sector opportunity. Technical Report, Cisco Inc.

  4. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the metis project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  5. Qualcomm. (2012). Rising to meet the 1000x mobile data challenge. Technical Report, Qualcomm Inc. https://www.qualcomm.com/media/documents/files/rising-to-meet-the-1000x-mobile-data-hallenge.pdf

  6. Docomo. (2014). 5G radio access: Requirements, concept and technologies. Technical Report, NTT Docomo. https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5g/DOCOMO_5G_White_Paper.pdf

  7. Huawei. (2013). 5G: A technology vision. Technical Report, Huawei Technologies Co. http://www.huawei.com/5gwhitepaper/

  8. NSN. (2014). Millimeter-wave 5G research instrument hits 1 GHz throughput. Technical Report, Nokia Siemens Networks. http://www.techdesignforums.com/blog/2014/08/07/nokia-siemens-millimeter-wave-5g-instrument/

  9. Rappaport, T., Murdock, J., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  10. Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  11. Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.

    Article  Google Scholar 

  12. Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Article  Google Scholar 

  13. Sulyman, A., Nassar, A., Samimi, M., MacCartney, G., Rappaport, T., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.

    Article  Google Scholar 

  14. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  15. Hur, S., Kim, T., Love, D., Krogmeier, J., Thomas, T., & Ghosh, A. (2013). Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Transactions on Communications, 61(10), 4391–4403.

    Article  Google Scholar 

  16. Taori, R., & Sridharan, A. (2014). In-band, point to multi-point, mm-wave backhaul for 5G networks. In 2014 IEEE international conference on communications workshops (ICC) (pp. 96–101).

  17. Khan, F., Pi, Z., & Rajagopal, S. (2012). Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In 2012 50th annual allerton conference on communication, control, and computing (Allerton) (pp. 1517–1523).

  18. Kulkarni, M., Singh, S., & Andrews, J. (2014). Coverage and rate trends in dense urban mmwave cellular networks. In 2014 IEEE global communications conference (GLOBECOM) (pp. 3809–3814).

  19. Bai, T., Vaze, R., & Heath, R. (2014). Analysis of blockage effects on urban cellular networks. IEEE Transactions on Wireless Communications, 13(9), 5070–5083.

    Article  Google Scholar 

  20. Ghosh, A., Thomas, T., Cudak, M., Ratasuk, R., Moorut, P., Vook, F., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.

    Article  Google Scholar 

  21. Akdeniz, M., Liu, Y., Samimi, M., Sun, S., Rangan, S., Rappaport, T., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Article  Google Scholar 

  22. Foschini, G., & Gans, M. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  23. Chuah, C.N., Kahn, J., & Tse, D. (1998). Capacity of multi-antenna array systems in indoor wireless environment. In Global telecommunications conference, 1998. GLOBECOM 1998. The bridge to global integration (Vol. 4, pp. 1894–1899). IEEE.

  24. Lozano, A., & Tulino, A. (2002). Capacity of multiple-transmit multiple-receive antenna architectures. IEEE Transactions on Information Theory, 48(12), 3117–3128.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., & Zhang, R. (2014). An overview of massive mimo: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  26. Hong, W., Baek, K. H., Lee, Y., Kim, Y., & Ko, S. T. (2014). Study and prototyping of practically large-scale mmwave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.

    Article  Google Scholar 

  27. Jindal, N., & Lozano, A. (2010). A unified treatment of optimum pilot overhead in multipath fading channels. IEEE Transactions on Communications, 58(10), 2939–2948.

    Article  Google Scholar 

  28. Xu, P., Wang, J., & Wang, J. (2013). Effect of pilot contamination on channel estimation in massive mimo systems. In 2013 international conference on wireless communications signal processing (WCSP) (pp. 1–6).

  29. Swindlehurst, A., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive mimo: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.

    Article  Google Scholar 

  30. Huh, H., Tulino, A., & Caire, G. (2012). Network mimo with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Transactions on Information Theory, 58(5), 2911–2934.

    Article  MathSciNet  Google Scholar 

  31. Ashikhmin, A., & Marzetta, T. (2012). Pilot contamination precoding in multi-cell large scale antenna systems. In 2012 IEEE international symposium on information theory proceedings (ISIT) (pp. 1137–1141).

  32. Yin, H., Gesbert, D., Filippou, M., & Liu, Y. (2013). A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 264–273.

    Article  Google Scholar 

  33. Noh, S., Zoltowski, M., Sung, Y., & Love, D. (2014). Pilot beam pattern design for channel estimation in massive mimo systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 787–801.

    Article  Google Scholar 

  34. Nam, Y. H., Ng, B. L., Sayana, K., Li, Y., Zhang, J., Kim, Y., et al. (2013). Full-dimension MIMO (FD-MIMO) for next generation cellular technology. IEEE Communications Magazine, 51(6), 172–179.

    Article  Google Scholar 

  35. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. (2014). Spatially sparse precoding in millimeter wave mimo systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  36. Bai, T., Alkhateeb, A., & Heath, R. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, 52(9), 70–77.

    Article  Google Scholar 

  37. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  38. Ngo, H., Larsson, E., & Marzetta, T. (2013). The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel. IEEE Transactions on Communications, 61(6), 2350–2361.

    Article  Google Scholar 

  39. Lee, B. M., Choi, J., Bang, J., & Kang, B. C. (2013). An energy efficient antenna selection for large scale green mimo systems. In 2013 IEEE international symposium on circuits and systems (ISCAS) (pp. 950–953).

  40. Gao, X., Edfors, O., Liu, J., & Tufvesson, F. (2013). Antenna selection in measured massive mimo channels using convex optimization. In 2013 IEEE globecom workshops (GC Wkshps) (pp. 129–134).

  41. Lu, X., Tolli, A., Piirainen, O., Juntti, M., & Li, W. (2011). Comparison of antenna arrays in a 3D multiuser multicell network. In 2011 IEEE international conference on communications (ICC) (pp. 1–6).

  42. Kammoun, A., Khanfir, H., Altman, Z., Debbah, M., & Kamoun, M. (2014). Preliminary results on 3D channel modeling: From theory to standardization. IEEE Journal on Selected Areas in Communications, 32(6), 1219–1229.

    Article  Google Scholar 

  43. Wu, S., Wang, C. X., Aggoune, E. H., Alwakeel, M., & He, Y. (2014). A non-stationary 3-D wideband twin-cluster model for 5G massive mimo channels. IEEE Journal on Selected Areas in Communications, 32(6), 1207–1218.

    Article  Google Scholar 

  44. 3GPP. (2012). Study on 3D-channel model for elevation beamforming and FD-MIMO studies for LTE. Technical Report, 3GPP TSG RAN Plenary.

  45. Michailow, N., Matthe, M., Gaspar, I., Caldevilla, A., Mendes, L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  46. Anderson, J., Rusek, F., & Owall, V. (2013). Faster-than-nyquist signaling. Proceedings of the IEEE, 101(8), 1817–1830.

    Article  Google Scholar 

  47. El Hefnawy, M., Dietl, G., & Kramer, G. (2014). Spectral shaping for faster-than-nyquist signaling. In 2014 11th international symposium on wireless communications systems (ISWCS) (pp. 496–500).

  48. Modenini, A., Rusek, F., & Colavolpe, G. (2014). Faster-than-nyquist signaling for next generation communication architectures. In 2014 Proceedings of the 22nd European signal processing conference (EUSIPCO) (pp. 1856–1860).

  49. Farhang-Boroujeny, B. (2011). Ofdm versus filter bank multicarrier. IEEE Signal Processing Magazine, 28(3), 92–112.

    Article  Google Scholar 

  50. Sahin, A., Guvenc, I., & Arslan, H. (2014). A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects. IEEE Communications Surveys Tutorials, 16(3), 1312–1338.

    Article  Google Scholar 

  51. Wunder, G., Kasparick, M., ten Brink, S., Schaich, F., Wild, T., Gaspar, I., et al. (2013). 5G now: Challenging the lte design paradigms of orthogonality and synchronicity. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5).

  52. Lin, H., Gharba, M., & Siohan, P. (2014). Impact of time and carrier frequency offsets on the FBMC/OQAM modulation scheme. Signal Processing, 102, 151–162.

    Article  Google Scholar 

  53. Ohlmer, E., Jar, M., & Fettweis, G. (2013). Model and comparative analysis of reduced-complexity receiver designs for the LTE-advanced SC-FDMA uplink. Physical Communication, 8, 5–21.

    Article  Google Scholar 

  54. Gerstacker, W., Adachi, F., Myung, H., & Dinis, R. (2013). Broadband single-carrier transmission techniques. Physical Communication, 8, 1–4.

    Article  Google Scholar 

  55. Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., & Ugolini, A. (2014). Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Processing Magazine, 31(6), 80–93.

    Article  Google Scholar 

  56. ITU-T. ITU q13/15 sync standards. Technical Report, ITU-T G.826x Series.

  57. ITU-T. ITU q13/15 sync standards. Technical Report, ITU-T G.827x Series.

  58. Berardinelli, G., Tavares, F., Mahmood, N., Tonelli, O., Cattoni, A., Sorensen, T., & Mogensen, P. (2013). Distributed synchronization for beyond 4G indoor femtocells. In 2013 20th international conference on telecommunications (ICT) (pp. 1–5).

  59. Berardinelli, G., Tavares, F., Tirkkonen, O., Sorensen, T., & Mogensen, P. (2014). Distributed initial synchronization for 5G small cells. In 2014 IEEE 79th vehicular technology conference (VTC Spring) (pp. 1–5).

  60. Wang, Y., Zheng, K., Shen, X., & Wang, W. (2011). A distributed resource allocation scheme in femtocell networks. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5).

  61. Sadr, S., & Adve, R. (2012). Hierarchical resource allocation in femtocell networks using graph algorithms. In 2012 IEEE international conference on communications (ICC) (pp. 4416–4420).

  62. Wang, S., Wang, J., Xu, J., Teng, Y., & Horneman, K. (2011). Cooperative component carrier (re-)selection for LTE-advanced femtocells. In 2011 IEEE wireless communications and networking conference (WCNC) (pp. 629–634).

  63. Garcia, L., Costa, G., Cattoni, A., Pedersen, K., & Mogensen, P. (2010). Self-organizing coalitions for conflict evaluation and resolution in femtocells. In 2010 IEEE global telecommunications conference (GLOBECOM 2010) (pp. 1–6).

  64. Wang, S., Wang, J., Xu, J., Teng, Y., & Horneman, K. (2013). Fairness guaranteed cooperative resource allocation in femtocell networks. Wireless Personal Communications, 72(2), 957–973.

    Article  Google Scholar 

  65. Chen, J., & Wang, L. C. (2013). Performance analysis of small cells using stochastic geometry approach in Nakagami fading channels. In 2013 IEEE/CIC international conference on communications in China (ICCC) (pp. 22–26).

  66. Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.

    Article  Google Scholar 

  67. Denkovski, D., Rakovic, V., Angjelicinoski, M., Atanasovski, V., & Gavrilovska, L. (2014). Small-cells radio resource management based on radio environmental maps. In 2014 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 155–156).

  68. Zheng, X., Xu, J., Wang, J., Yang, Y., Zheng, X., Teng, Y., et al. (2012). Mcpao: A distributed multi-channel power allocation and optimization algorithm for femtocells. Mobile Networks and Applications, 17(5), 648–661.

    Article  Google Scholar 

  69. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  70. Cheung, W. C., Quek, T., & Kountouris, M. (2012). Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE Journal on Selected Areas in Communications, 30(3), 561–574.

    Article  Google Scholar 

  71. Jo, H. S., Xia, P., & Andrews, J. (2012). Open, closed, and shared access femtocells in the downlink. EURASIP Journal on Wireless Communications and Networking, 2012(1), 363.

    Article  Google Scholar 

  72. Zhong, Y., & Zhang, W. (2013). Multi-channel hybrid access femtocells: A stochastic geometric analysis. IEEE Transactions on Communications, 61(7), 3016–3026.

    Article  Google Scholar 

  73. Smiljkovikj, K., Ichkov, A., Angjelicinoski, M., Atanasovski, V., & Gavrilovska, L. (2014). Analysis of two-tier LTE network with randomized resource allocation and proactive offloading. CoRR arxiv.org/abs/1412.5340.

  74. Elshaer, H., Boccardi, F., Dohler, M., & Irmer, R. (2014). Downlink and uplink decoupling: A disruptive architectural design for 5G networks. CoRR arxiv.org/abs/1405.1853.

  75. Smiljkovikj, K., Popovski, P., & Gavrilovska, L. (2014). Analysis of the decoupled access for downlink and uplink in wireless heterogeneous networks. CoRR arxiv.org/abs/1407.0536.

  76. Smiljkovikj, K., Elshaer, H., Popovski, P., Boccardi, F., Dohler, M., Gavrilovska, L., & Irmer, R. (2014). Capacity analysis of decoupled downlink and uplink access in 5G heterogeneous systems. CoRR arxiv.org/abs/1410.7270.

  77. Smiljkovikj, K., Gavrilovska, L., & Popovski, P. (2014). Efficiency analysis of decoupled downlink and uplink access in heterogeneous networks. CoRR arxiv.org/abs/1412.1652.

  78. Doppler, K., Rinne, M., Janis, P., Ribeiro, C., & Hugl, K. (2009). Device-to-device communications; functional prospects for LTE-advanced networks. In IEEE international conference on communications workshops, ICC Workshops 2009 (pp. 1–6).

  79. Akkarajitsakul, K., Phunchongharn, P., Hossain, E., & Bhargava, V. (2012). Mode selection for energy-efficient D2D communications in LTE-advanced networks: A coalitional game approach. In 2012 IEEE international conference on communication systems (ICCS) (pp. 488–492).

  80. Pei, Y., & Liang, Y.C. (2013). Resource allocation for device-to-device communication overlaying two-way cellular networks. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 3346–3351).

  81. Feng, D., Lu, L., Yuan-Wu, Y., Li, G., Feng, G., & Li, S. (2013). Device-to-device communications underlaying cellular networks. IEEE Transactions on Communications, 61(8), 3541–3551.

    Article  Google Scholar 

  82. Zhou, B., Hu, H., Huang, S. Q., & Chen, H. H. (2013). Intracluster device-to-device relay algorithm with optimal resource utilization. IEEE Transactions on Vehicular Technology, 62(5), 2315–2326.

    Article  Google Scholar 

  83. Liu, Z., Peng, T., Chen, H., & Wang, W. (2012). Optimal D2D user allocation over multi-bands under heterogeneous networks. In 2012 IEEE global communications conference (GLOBECOM) (pp. 1339–1344).

  84. Su, L., Ji, Y., Wang, P., & Liu, F. (2013). Resource allocation using particle swarm optimization for D2D communication underlay of cellular networks. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 129–133).

  85. Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Transactions on Wireless Communications, 12(3), 1038–1049.

    Article  Google Scholar 

  86. Golrezaei, N., Molisch, A., & Dimakis, A. (2012). Base-station assisted device-to-device communications for high-throughput wireless video networks. In 2012 IEEE international conference on communications (ICC) (pp. 7077–7081).

  87. Asadi, A., & Mancuso, V. (2013). Energy efficient opportunistic uplink packet forwarding in hybrid wireless networks. In Proceedings of the fourth international conference on future energy systems, e-Energy ’13 (pp. 261–262). New York, NY: ACM.

  88. Asadi, A., & Mancuso, V. (2013). On the compound impact of opportunistic scheduling and D2D communications in cellular networks. In Proceedings of the 16th ACM international conference on modeling, analysis & #38; Simulation of wireless and mobile systems, MSWiM ’13 (pp. 279–288). New York, NY: ACM.

  89. Asadi, A., & Mancuso, V. (2013). WiFi direct and LTE D2D in action. In Wireless days (WD), 2013 IFIP (pp. 1–8).

  90. Wang, Q., & Rengarajan, B. (2013). Recouping opportunistic gain in dense base station layouts through energy-aware user cooperation. In 2013 IEEE 14th international symposium and workshops on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–9).

  91. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  92. Hamdi, A., & Hossain, E. (2015). Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. IEEE Transactions on Communications, 99, 1–1.

  93. ETSI. (2013). Network function virtualisationnetwork operator perspectives on industry progress. Technical Report. http://portal.etsi.org/NFV/NFV_White_Paper2.pdf

  94. Packard, H. (2014). HP survey of NFV priorities for service provider CIOS and CTOS. Technical Report. http://www.hp.com/hpinfo/newsroom/press_kits/2014/MWC/HP_FactSheet_NFVPriorities.pdf

  95. Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., et al. (2013). Are we ready for SDN? implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36–43.

    Article  Google Scholar 

  96. Foundation, O.N. (2014). Openflow-enabled SDN and network functions virtualization. Technical Report. https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf

  97. Corporation, N. (2014). SDN & NFV: The future for telecoms. Technical Report. http://www.nec.com/en/global/ad/insite/feature/pdf/SDNandNFV.pdf

  98. Kang, J. M., Lin, T., Bannazadeh, H., & Leon-Garcia, A. (2014). Software-defined infrastructure and the SAVI testbed. In V. C. Leung, M. Chen, J. Wan, & Y. Zhang (Eds.), Testbeds and research infrastructure: Development of networks and communities, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 137, pp. 3–13). Berlin: Springer.

    Google Scholar 

  99. Nunes, B., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys Tutorials, 16(3), 1617–1634.

    Article  Google Scholar 

  100. Rost, P., et al. (2014). Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 52(5), 68–76.

    Article  Google Scholar 

  101. Sabella, D., Rost, P., Sheng, Y., Pateromichelakis, E., Salim, U., Guitton-Ouhamou, P., et al. (2013). RAN as a service: Challenges of designing a flexible RAN architecture in a cloud-based heterogeneous mobile network. In Future network and mobile summit (FutureNetworkSummit), 2013 (pp. 1–8).

  102. Checko, A., Christiansen, H., Yan, Y., Scolari, L., Kardaras, G., Berger, M., & Dittmann, L. (2014). Cloud ran for mobile networks—a technology overview. IEEE Communications Surveys Tutorials, 17(1), 405–426.

  103. IUT-R. (2014). IMT vision towards 2020 and beyond. Technical Report.

  104. IUT-R. (2014). Views on IMT beyond 2020. Technical Report.

  105. IUT-R. (2014). Work plan, timeline, process and deliverables for IMT-2020 development. Technical Report.

  106. Online information. http://www.etsi.org/news-events/news/724-2013-11-5g-mobile-system-requirements-discussed-at-etsi-future-mobile-summit

  107. WP5D-AR, I.R. (2014). Report ITU-R M.[IMT.above 6 GHz] (draft). Technical Report. https://www.itu.int/md/R12-WP5D.AR-C-0554/en

  108. IUT-R. (2014). Working document towards a preliminary draft: New report ITU-R M.[IMT.above 6 GHz]. Technical Report.

  109. Commission, F.C. (2014). Notice of inquiry: Use of spectrum bands above 24 GHz for mobile radio services. Technical Report. https://apps.fcc.gov/edocs_public/attachmatch/FCC-14-154A1.pdf

  110. CEPT. (2014). EU workshop on spectrum planning for 5G. Technical Report. https://ec.europa.eu/digital-agenda/en/news/eu-workshop-spectrum-planning-5g-0

  111. 5G-PPP. http://5g-ppp.eu/about-us/

  112. European Commision. (2014). Horizon 2020 the framework programme for research and innovation. Technical Report. http://ec.europa.eu/digital-agenda/en/towards-5g

  113. ICT-FP7-METIS. https://www.metis2020.com/about-metis/

  114. ICT-FP7-5GNOW. http://www.5gnow.eu/

  115. ICT-FP7-iJoin. http://www.ict-ijoin.eu/description/

  116. ICT-FP7-TROPIC. http://www.ict-tropic.eu/

  117. ICT-FP7-MCN. http://www.mobile-cloud-networking.eu/site/

  118. ICT-FP7-COMBO. http://www.ict-combo.eu/index.php?id=projects

  119. ICT-FP7-CROWD. http://www.ict-crowd.eu/

  120. ICT-FP7-MOTO. http://www.fp7-moto.eu/

  121. ICT-FP7-PHYLAWS. http://www.phylaws-ict.org/

  122. MiWEBA Project. http://www.miweba.eu/

  123. 5G forum. http://www.5gforum.org/eng/main/index.php

  124. Radio Industries, A., & (ARIB), B. (2014). Mobile communications systems for 2020 and beyond. Technical Report. http://www.arib.or.jp/english/20bah-wp-100.pdf

  125. Promotion Group, I. (2014). IMT vision towards 2020 and beyond. Technical Report. http://www.itu.int/dms_pub/itu-r/oth/0a/06/R0A0600005D0001PDFE.pdf

  126. METIS. (2014). Challenges and scenarios of the fifth generation (5G) wireless communications system. Technical Report. https://www.metis2020.com/wp-content/uploads/presentations/W@kth_METIS_overview_scenarios_20131115_web.pdf

  127. Ericsson. (2014). 40 gbps demonstrated in newly developed chipset at 140 GHz. Technical Report. http://www.ericsson.com/research-blog/5g/40-gbps-demonstrated-newly-developed-chipset-140-ghz/#more-1401

  128. NATO SfP-984409 Optimization and Rational Use of Wireless Communication Bands (ORCA). (2015). http://orca.feit.ukim.edu.mk/

Download references

Acknowledgments

This work is sponsored by the Public Diplomacy Division of NATO in the framework of “Science for Peace” through the SfP-984409 “Optimization and Rational Use of Wireless Communication Bands (ORCA)” Project [128].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Rakovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilovska, L., Rakovic, V. & Atanasovski, V. Visions Towards 5G: Technical Requirements and Potential Enablers. Wireless Pers Commun 87, 731–757 (2016). https://doi.org/10.1007/s11277-015-2632-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2632-7

Keywords

Navigation