Skip to main content

5G Cellular: Concept, Research Work and Enabling Technologies

  • Conference paper
  • First Online:
Advances in Data and Information Sciences

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 39))

Abstract

The enormous growth in communication technology is resulting in an excessively connected network where billions of connected devices produce massive data flow. The upcoming 5th generation mobile technology needs a major paradigm shift so as to fulfil the growing demand for reliable, ubiquitous connectivity, augmented bandwidth, lower latency and improved energy efficiency. All new mobile technologies for 5G are expected to be operational by 2020. This paper presents the basic concepts, working research groups for 5G, standards and the various enabling technologies. Besides, the paper presents a comparative analysis of 5G over the contemporary cellular technologies (LTE, GSM) based on various relevant parameters. This review is helpful for the new researchers, aspiring to work in the field of 5G technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Govil J, Govil J (2008) 5G: functionalities development and an analysis of mobile wireless grid. In: First international conference on emerging trends in engineering and technology, ICETET’08. IEEE

    Google Scholar 

  2. Gohil A, Modi H, Patel SK (2013) 5G technology of mobile communication: a survey. In: International conference on intelligent systems and signal processing (ISSP). IEEE

    Google Scholar 

  3. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655

    Article  Google Scholar 

  4. Munoz R, Mayoral A, Vilalta R, Casellas R, Martinez R, Lopez V (2016) The need for a transport API in 5G networks: the control orchestration protocol. In: Optical fiber communications conference and exhibition (OFC). IEEE, pp 1–3

    Google Scholar 

  5. Petrov I, Janevski T (2016) Design of novel 5G transport protocol. In: 2016 international conference in wireless networks and mobile communications (WINCOM). IEEE, pp 29–33

    Google Scholar 

  6. Rao S, Kumar V, Kumar S, Yadav S, Ancha VK, Tripathi R (2017) Power efficient and coordinated eICIC-CPC-ABS method for downlink in LTE-advanced heterogeneous networks. Phys Commun (Elsevier)

    Google Scholar 

  7. Pedapolu PK, Kumar P, Harish V, Venturi S, Bharti SK, Kumar V, Kumar S (2017) Mobile phone users speed estimation using WiFi signal-to-noise ratio. In: Proceedings of the 18th ACM international symposium on mobile ad hoc networking and computing, p 32

    Google Scholar 

  8. Boviz D, El Mghazli Y (2016) Fronthaul for 5G: low bit-rate design enabling joint transmission and reception. In: Globecom workshops (GC Wkshps). IEEE, pp 1–6

    Google Scholar 

  9. Sharawi MS, Podilchak SK, Hussain MT, Antar YM (2017) Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microw Antennas Propag 11(2):287–293

    Article  Google Scholar 

  10. Chao H, Chen Y, Wu J, Zhang H (2016) Distribution reshaping for massive access control in cellular networks. In: 84th in vehicular technology conference (VTC-Fall). IEEE, pp 1–5

    Google Scholar 

  11. Gupta A, Jha RK (2015) A survey of 5G network: architecture and emerging technologies. IEEE Access 3:1206–1232

    Article  Google Scholar 

  12. Wang CX, Haider F, Gao X, You XH, Yang Y, Yuan D, Hepsaydir E (2016) Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag 52(2):122–130

    Article  Google Scholar 

  13. Hossain E, Hasan M (2015) 5G cellular: key enabling technologies and research challenges. IEEE Instrum Meas Mag 18(3):11–21

    Article  Google Scholar 

  14. Mitra RN, Agrawal DP (2015) 5G mobile technology: a survey. ICT Express (Elsevier) 1(3):132–137

    Article  Google Scholar 

  15. Akyildiz IF, Nie S, Lin SC, Chandrasekaran M (2016) 5G roadmap: 10 key enabling technologies. Comput Netw (Elsevier) 106:17–48

    Article  Google Scholar 

  16. Wei L, Hu RQ, Qian Y, Wu G (2016) Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel Commun 21(6):136–143

    Google Scholar 

  17. Shen X (2015) Device-to-device communication in 5G cellular networks. IEEE Netw 29(2):2–3

    Article  Google Scholar 

  18. Pirinen P (2014) A brief overview of 5G research activities. In: 1st international conference on 5G for ubiquitous connectivity (5GU), IEEE, pp 17–22

    Google Scholar 

  19. Project Coordinator: Afif Osseiran Ericsson AB, FP7 Integrating Project METIS (ICT 317669). https://www.metis2020.com/documents/deliverables/

  20. The 5G Infrastructure Public Private Partnership. http://5g-ppp.eu/

  21. Internet Resource, 5GNOW Deliverable 2.2. http://www.5gnow.eu/download/5GNOW_D2.2_v1.0.pdf

  22. Internet Resource, EMPhAtiC Deliverable 4.1: http://www.ict-emphatic.eu/images/deliverables/deliverable_d4.1_final.pdf

  23. FP7 STReP project E3NETWORK (lCT 317957). http://www.ict-e3network.eu/

  24. FP7 STReP project PHYLAWS (ICT 317562). http://www.phylaws-ict.org

  25. FP7 STReP project DUPLO (lCT 316369). http://www.fp7-duplo.eu/

  26. FP7 STReP project CROWD (ICT 318115). http://www.ict-crowd.eu/

  27. FP7 STReP project DIWlNE (ICT 318177). http://diwine-project.eu/

  28. Internet Resource, NEWCOM Deliverables 23.3. http://www.newcom-project.eu/images/Delivarables/D23.3-Secondreportontoolsandtheirintegrationontheexperimentalsetups.pdf

  29. Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Gutierrez F (2013) Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access 1:335–349

    Article  Google Scholar 

  30. Internet Resource, 5GIC. http://www.surrey.ac.uk/5gic

  31. FP7 STReP project SODALES (ICT 318600). http://www.fp7-sodales.eu/

Download references

Acknowledgements

The authors express thanks to Ajinkya Ramdas Puranik, Akshay Kulkarni, Ankit Waghmare, Amit Waghmare and Vivek Pathak for their valuable contributions in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, V., Yadav, S., Sandeep, D.N., Dhok, S.B., Barik, R.K., Dubey, H. (2019). 5G Cellular: Concept, Research Work and Enabling Technologies. In: Kolhe, M., Trivedi, M., Tiwari, S., Singh, V. (eds) Advances in Data and Information Sciences . Lecture Notes in Networks and Systems, vol 39. Springer, Singapore. https://doi.org/10.1007/978-981-13-0277-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0277-0_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0276-3

  • Online ISBN: 978-981-13-0277-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics