Skip to main content
Log in

Performance analysis of UAV multiple antenna-assisted small cell network with clustered users

  • OriginalPaper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The emerging unmanned aerial vehicles (UAVs) are playing an important role to assist cellular networks and provide ubiquitous coverage for cellular networks. UAVs can eventually increase capacity and facilitate line-of-sight connections. In this paper, we develop an analytical framework to analyze coverage probability for UAVs-assisted small base stations (SBSs) with clustered users, taking into consideration mm-Wave and directional beamforming. Moreover, the contributions mainly include the consideration of multiple-input-multiple-output (MIMO) transmission. Additionally, the clustered user’s locations are modeled as Matern cluster process (MCP). Using tools from stochastic geometry, we derive a general expression for coverage probability according to the signal-to-interference-plus-noise ratio, by considering interference between UAVs and SBSs. The analytical results are validated using Monte-Carlo simulations in which the transmit power of SBS and UAV are considered to be 30 and 24 dBm respectively along with a carrier frequency of 28 GHz. The association probability is calculated as a function of cluster size and UAV density with different values of UAV height. Similarly, the coverage probability is computed as a function of SINR. It is observed from the results that the association probability depends on the altitude of the deployed UAVs and the typical height of a UAV should be between 40–120 m in order to achieve maximum association with a user. Further, it is observed that an upsurge in the density of UAVs and cluster size also affects the association criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, X., Wang, Q., Peng, H., Zhang, H., Do, D.-T., Rabie, K. M., et al. (2020). A unified framework for HS-UAV NOMA networks: Performance analysis and location optimization. IEEE Access, 8, 13329–13340.

    Article  Google Scholar 

  2. Cheriguene, Y., Bousbaa, F.Z., Kerrache, C.A., Djellikh, S., Lagraa, N., Lahby, M., & Lakas, A (2022). COCOMA: A resource-optimized cooperative UAVs communication protocol for surveillance and monitoring applications. Wireless Networks, 1–17

  3. Li, X., Wang, Q., Liu, Y., Tsiftsis, T. A., Ding, Z., & Nallanathan, A. (2020). UAV-aided multi-way NOMA networks with residual hardware impairments. IEEE Wireless Communications Letters, 9(9), 1538–1542.

    Article  Google Scholar 

  4. Xu, X., & Zeng, Y. (2019). Cellular-connected UAV: Performance analysis with 3d antenna modelling. In 2019 IEEE international conference on communications workshops (ICC workshops) (pp. 1–6). IEEE.

  5. Bousbaa, F. Z., Kerrache, C. A., Mahi, Z., Tahari, A. E. K., Lagraa, N., & Yagoubi, M. B. (2020). GeoUAVs: A new geocast routing protocol for fleet of UAVs. Computer Communications, 149, 259–269.

    Article  Google Scholar 

  6. Bithas, P. S., Nikolaidis, V., Kanatas, A. G., & Karagiannidis, G. K. (2020). UAV-to-ground communications: Channel modeling and UAV selection. IEEE Transactions on Communications, 68(8), 5135–5144.

    Article  Google Scholar 

  7. Lyu, J., & Zhang, R. (2019). Network-connected UAV: 3-D system modeling and coverage performance analysis. IEEE Internet of Things Journal, 6(4), 7048–7060.

    Article  Google Scholar 

  8. Geraci, G., Garcia-Rodriguez, A., Azari, M.M., Lozano, A., Mezzavilla, M., Chatzinotas, S., Chen, Y., Rangan, S., & Di Renzo, M. (2021). What will the future of UAV cellular communications be? A flight from 5G to 6G. arXiv preprint arXiv:2105.04842

  9. Zhou, L., Yang, Z., Zhou, S., & Zhang, W. (2018). Coverage probability analysis of UAV cellular networks in urban environments. In: 2018 IEEE international conference on communications workshops (ICC workshops) (pp. 1–6). IEEE.

  10. Tang, W., Zhang, H., & He, Y. (2020). Tractable modelling and performance analysis of UAV networks with 3D blockage effects. IEEE Wireless Communications Letters, 9(12), 2064–2067.

    Article  Google Scholar 

  11. Fan, C., Zhang, T., & Zeng, Z. (2019). Coverage and rate analysis of cache-enabled vertical heterogeneous networks. IEEE Access, 7, 153519–153532.

    Article  Google Scholar 

  12. Amer, R., Saad, W., Galkin, B., & Marchetti, N. (2020). Performance analysis of mobile cellular-connected drones under practical antenna configurations. In ICC 2020-2020 IEEE international conference on communications (ICC) (pp. 1–7). IEEE.

  13. Armeniakos, C. K., Bithas, P. S., & Kanatas, A. G. (2020). Sir analysis in 3D UAV networks: A stochastic geometry approach. IEEE Access, 8, 204963–204973.

    Article  Google Scholar 

  14. Chetlur, V. V., & Dhillon, H. S. (2017). Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles. IEEE Transactions on Communications, 65(10), 4543–4558.

    Google Scholar 

  15. Turgut, E., & Gursoy, M. C. (2018). Downlink analysis in unmanned aerial vehicle (UAV) assisted cellular networks with clustered users. IEEE Access, 6, 36313–36324.

    Article  Google Scholar 

  16. Yi, W., Liu, Y., Bodanese, E., Nallanathan, A., & Karagiannidis, G. K. (2019). A unified spatial framework for UAV-aided mmWave networks. IEEE Transactions on Communications, 67(12), 8801–8817.

    Article  Google Scholar 

  17. Mohajer, A., Daliri, M.S., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing, 1–14

  18. Nikjoo, F., Mirzaei, A., & Mohajer, A. (2018). A novel approach to efficient resource allocation in NOMA heterogeneous networks: Multi-criteria green resource management. Applied Artificial Intelligence, 32(7–8), 583–612.

    Article  Google Scholar 

  19. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K.J., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 1–12

  20. Saha, C., Afshang, M., & Dhillon, H. S. (2017). 3GPP-inspired HetNet model using Poisson cluster process: sum-product functionals and downlink coverage. IEEE Transactions on Communications, 66(5), 2219–2234.

    Article  Google Scholar 

  21. Ouamri, M. A. (2021). Stochastic geometry modeling and analysis of downlink coverage and rate in small cell network. Telecommunication Systems, 77(4), 767–779.

    Article  Google Scholar 

  22. Al-Hourani, A., Kandeepan, S., & Jamalipour, A. (2014). Modeling air-to-ground path loss for low altitude platforms in urban environments. In 2014 IEEE global communications conference (pp. 2898–2904). IEEE.

  23. Wu, H., Tao, X., Zhang, N., & Shen, X. (2018). Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage. IEEE Journal on Selected Areas in Communications, 36(9), 2045–2058.

    Article  Google Scholar 

  24. Yu, X., Zhang, J., Haenggi, M., & Letaief, K. B. (2017). Coverage analysis for millimeter wave networks: The impact of directional antenna arrays. IEEE Journal on Selected Areas in Communications, 35(7), 1498–1512.

    Article  Google Scholar 

  25. Ouamri, M. A., Oteşteanu, M.-E., Isar, A., & Azni, M. (2020). Coverage, handoff and cost optimization for 5G heterogeneous network. Physical Communication, 39, 101037.

    Article  Google Scholar 

  26. Abbas, Z. H., Ullah, A., Abbas, G., Muhammad, F., & Li, F. Y. (2019). Outage probability analysis of user-centric SBS-based HCNets under hybrid Rician/Rayleigh fading. IEEE Communications Letters, 24(2), 297–301.

    Article  Google Scholar 

  27. Bai, T., & Heath, R. W. (2014). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.

    Article  Google Scholar 

  28. Wang, X., & Gursoy, M. C. (2019). Coverage analysis for energy-harvesting UAV-assisted mmWave cellular networks. IEEE Journal on Selected Areas in Communications, 37(12), 2832–2850.

    Article  Google Scholar 

  29. Atzeni, I., Arnau, J., & Kountouris, M. (2017). Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations. IEEE Transactions on Wireless Communications, 17(1), 142–156.

    Article  Google Scholar 

  30. Huang, Y., Al-Qahtani, F. S., Duong, T. Q., & Wang, J. (2015). Secure transmission in MIMO wiretap channels using general-order transmit antenna selection with outdated CSI. IEEE Transactions on Communications, 63(8), 2959–2971.

    Article  Google Scholar 

  31. Zhang, Y., & Dai, L. (2019). A closed-form approximation for uplink average ergodic sum capacity of large-scale multi-user distributed antenna systems. IEEE Transactions on Vehicular Technology, 68(2), 1745–1756.

    Article  Google Scholar 

  32. Alzer, H. (1997). On some inequalities for the incomplete gamma function. Mathematics of Computation, 66(218), 771–778.

    Article  MathSciNet  MATH  Google Scholar 

  33. Andrews, J. G., Bai, T., Kulkarni, M. N., Alkhateeb, A., Gupta, A. K., & Heath, R. W. (2016). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications, 65(1), 403–430.

    Google Scholar 

  34. Lim, H., & Yoon, D. (2019). On the distribution of SINR for MMSE MIMO systems. IEEE Transactions on Communications, 67(6), 4035–4046.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 52164007, in part by the Guizhou science and technology major projects under Grant [2018]3005, in part by the Department of Education of Guizhou Province rolling support science and technology project under Grant KY[2016]042, in part by the Key Scientific Research Projects of Higher Education Institutions in Henan Province under Grant 23B510001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Ouamri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} F_{R_U}&= P(r>\chi ) \\&= E_D[(P(r>\chi )\mid k,D) P(k\mid D)] \\&= W_U^{k^{-1}}\\&\quad \times E_D \left[ P\left( \sqrt{D^2 + H^2}> \chi \mid k,D\right) P_U^k\left( \sqrt{D^2 + H^2}\right) \right] \\&= W_U^{k^{-1}} \times E_D \left[ P\left( D > \sqrt{\chi ^2 - H^2}\right) P_U^k\left( \sqrt{D^2 + H^2}\right) \right] \\&= W_U^{k^{-1}} \int _l^\infty P_U^k(\sqrt{D^2 + H^2}) f_D(d) {\mathbf {d}}d \end{aligned}$$

where \(W_U^k=1-e^{2 \pi \lambda \int _{H_z}^\infty t P_U^k(t) dt}\) is the probability that the typical UE has at least one LOS/NLOS UAV [28]

Appendix B

Association probability for UAV \((U\ne U')\).

$$\begin{aligned} {\mathbb {A}}_U^k&= P(P_UG_UB_UPL_U^{k^{-1}} \ge P_{U'}G_{U'}B_{U'}PL_{U'}^{-1}) \\&= P(P L_U^{k'^{-1}} \ge P L_{U}^{K^{-1}}) \times P(P_UG_UB_UPL_U^{k^{-1}} \\&\ge P_{U'}G_{U'}B_{U'}PL_{U'}^{b^{-1}}) \\&= P(P L_U^{k'^{-1}} \ge P L_{U}^{K^{-1}}) \\&\quad \times P\left( P L_{U'}^{b}\ge \frac{P_{U'}G_{U'}B_{U'}}{P_UG_UB_U} P L_{U}^{K}\right) \\&= E_{R^k_U}\Bigg [P(P L_U^{k'^{-1}} \ge P L_{U}^{K^{-1}})P(\Phi _{U'}^b(\tau _{U'}^2 + H_{z,U^2})^{\frac{\alpha ^b_{U'}}{2}} \\&> \frac{P_{U'}G_{U'}B_{U'}}{P_UG_UB_U} \Phi ^k_U(\tau _{U}^2 + H_{z,U^2})^{\frac{\alpha ^b_{U}}{2}}\Bigg ] \\&= E_{R^k_U}\\&\quad \times \left[ P\left( \tau _U>\sqrt{\left( \frac{\Phi _U^k}{\Phi _{U'}^{k'}}\left( \tau ^2_U + H_{z,U^2}\right) ^{\frac{\alpha ^b_{U}}{2}}\right) ^{\frac{2}{\alpha ^k_{U}}} - H_{z,U}^2}\right) \right. \\&\left. \quad \times P\left( \tau _{U'} > \sqrt{\left( \frac{P_{U'}G_{U'}B_{U'}\Phi _U^k}{P_UG_UB_U\Phi _{U'}^b}\left( \tau ^2_U + H_{z,U^2}\right) ^{\frac{\alpha ^k_{U}}{2}}\right) ^{\frac{2}{\alpha ^b_{U'}}} - H_{z,U}^2 }\right) \right] \\&= E_{R^k_U} \left[ \prod F_U^{k'} (C_{UU}^{kk'}(\tau _U)) F_{R_U^b}(C_{U'U}^{kb}(\tau _U)) \right] \end{aligned}$$

where \(C_{UU}^{kk'}(\tau _U) = \sqrt{\left( \frac{\Phi _U^k}{\Phi _{U'}^{k'}} \left( \tau ^2_U + H_{z,U^2}\right) ^{\frac{2}{\alpha _U^k}} - H_{z,U^2} \right) }\) and \(C_{U'U}^{kb}(\tau _U) = \sqrt{\left( \frac{P_{U'}G_{U'}B_{U'}\Phi _U^k}{P_{U}G_{U}B_{U}\Phi _{U'}^k} \left( \tau ^2_U + H_{z,U^2}\right) ^{\frac{2}{\alpha _{U'}^k}} - H_{z,U^2} \right) }\)

Association Probability for SBS \((S\ne S')\)

$$\begin{aligned} {\mathbb {A}}_S^k&= P(P_SG_SB_SPL_S^{k^{-1}} \ge P_{S'}G_{S'}B_{S'}PL_{S'}^{-1}) \\&= P(P L_S^{k'^{-1}} \ge P L_{S}^{K^{-1}}) \times P(P_SG_SB_SPL_S^{k^{-1}} \\&\ge P_{S'}G_{S'}B_{S'}PL_{S'}^{b^{-1}}) \\&= P(A_S^{k'} \ge A_{S}^{K} \tau ^{\alpha ^k_S}) \times P\left( P_SG_SB_SA_{S'}^b\tau _{S'}^{\alpha ^b_{S'}}\right. \\&\left. \ge P_{S'}G_{S'}B_{S'}A_{S}^k\tau _{S}^{\alpha ^k_{S}} \right) \\&= E_{R^k_S}\left[ P\left( A_{S}^{K'} \tau _{S}^{\alpha ^{k'}_{S}}\right) \right. \\&\quad \left. \times P\left( \tau _{S'}^{\alpha ^{b}_{S'}}> \frac{P_{U'}G_{U'}B_{U'}\Phi ^k_U }{P_UG_UB_U \Phi ^k_{U'}} (\tau _{S}^{\alpha ^k_{S}} \right) ^{\frac{1}{\alpha ^b_{S'}}} \right] \\&= E_{R^k_S}\left[ P\left( \left( \frac{A_{S}^{K}}{A_{S}^{K'}}\right) ^{\frac{1}{\alpha ^k_S}}\right) \right. \\&\quad \left. \times P\left( \tau _{S'}^{\alpha ^{b}_{S'}} > \frac{P_{U'}G_{U'}B_{U'}\Phi ^k_U }{P_UG_UB_U \Phi ^k_{U'}} (\tau _{S}^{\alpha ^k_{S}} \right) ^{\frac{1}{\alpha ^b_{S'}}} \right] \\&= E_{R^k_S} \left[ \prod F_S^{k'} (Q_{SS}^{kk'}(\tau _S)) F_{R_S^b}(Q_{S'S}^{kb}(\tau _S))\right] \end{aligned}$$

where \(Q_{SS}^{kk'}(\tau _S) = \left( \frac{A_S^k}{A_{S}^{k'}} \tau ^{\alpha _S^k}_S\right) ^{\frac{1}{\alpha _S^k}} \) and \(Q_{S'S}^{kb}(\tau _S) = \left( \frac{P_{U'}G_{U'}B_{U'}\Phi _U^k}{P_{U}G_{U}B_{U}\Phi _{U'}^b} \tau ^{\alpha _S^k}_S\right) ^{\frac{1}{\alpha _{S'}^b}} \)

Appendix C

$$\begin{aligned}&P_{C,U}^k = P(\gamma _U> \tau ) = P\left( \frac{N_tP_{U}G_{U}h_{U}PL_U^k(r)^{-1}}{I_{U'}+I_S+\sigma ^2}> \tau \right) \\&\quad = P\left( h_U > \frac{\tau PL_U^k(r)}{N_tP_{U}M_rM_t} (I_{U'}+I_S+\sigma ^2)\right) \\&\quad = E_{M_rM_t} \left[ 1- E_{I_{U'},I_S} \left[ \left( 1- e^{-\frac{\tau PL_U^k(r)}{N_tP_{U}M_rM_t} (I_{U'}+I_S+\sigma ^2)}\right) ^{N_k}\right] \right] \\&\quad = E_{M_rM_t} \left[ \sum _{n=1}^{N_k} (-1)^{n+1} \left( \begin{array}{c} N_{k}\\ n \end{array}\right) E_{I_{U'},I_S} \left[ e^{-\mu (I_{U'}+I_S+\sigma ^2)}\right] \right] \\&\quad = E_{M_rM_t} \left[ \sum _{n=1}^{N_k} (-1)^{n+1} \left( \begin{array}{c} N_{k}\\ n \end{array}\right) E_{I_{U'}} \left[ e^{-\mu \sigma ^2I_{U'})}\right] E_{I_{S}} \left[ e^{-\mu \sigma ^2I_{S})}\right] \right] \\&\quad = E_{M_rM_t} \left[ \sum _{n=1}^{N_k} (-1)^{n+1} \left( \begin{array}{c} N_{k}\\ n \end{array}\right) e^{-\mu \sigma ^2)} {{\textbf {L}}}_{I_{U'}}(\mu ) {{\textbf {L}}}_{I_{S}}(\mu )\right] \end{aligned}$$

(C.1) is from [32], (C.2) follows the Binomial theorem and the assumption that \(N_k\) is an integer. (C.3) follows from the independence between the interference and (C.4) is from the definition of the Laplace transform [33].

$$\begin{aligned}&P_{C,S}^k = P(\gamma _S> \tau ) = P\left( \frac{P_{S}G_{S}h_{S}PL_S^k(r)^{-1}}{I_{S'}+I_U+\sigma ^2}> \tau \right) \\&\quad = P\left( h_S > \frac{\tau PL_S^k(r)}{M_rM_tP_S} (I_{S'}+I_U+\sigma ^2)\right) \\&\quad \approx E_{M_rM_t} \left[ 1- E_{I_{S'},I_U} \left[ \left( 1- e^{-\frac{\tau PL_S^k(r)}{M_rM_tP_S} (I_{S'}+I_U+\sigma ^2)}\right) ^{N_k}\right] \right] \\&\quad = E_{M_rM_t} \left[ \sum _{n=1}^{N_k} (-1)^{n+1} \left( \begin{array}{c} N_{k}\\ n \end{array}\right) E_{I_{S'},I_U} \left[ e^{-q(I_{S'}+I_U+\sigma ^2)}\right] \right] \\&\quad = E_{M_rM_t} \left[ \sum _{n=1}^{N_k} (-1)^{n+1} \left( \begin{array}{c} N_{k}\\ n \end{array}\right) E_{I_{S'}} \left[ e^{-q \sigma ^2I_{S'})}\right] E_{I_{U}} \left[ e^{-\mu \sigma ^2I_{U})}\right] \right] \\&\quad = E_{M_rM_t} \left[ \sum _{n=1}^{N_k} (-1)^{n+1} \left( \begin{array}{c} N_{k}\\ n \end{array}\right) e^{-q \sigma ^2)} {{\textbf {L}}}_{I_{S'}}(\mu ) {{\textbf {L}}}_{I_{U}}(\mu )\right] \end{aligned}$$

Appendix D

$$\begin{aligned} {{\textbf {L}}}_{I_{U'}}(\mu )&= E[e^{-\mu I_{U'}}] \\&= E\left[ \prod _{U'\in \frac{\Phi _{UAV}}{b(0,X)}} exp\left( -\mu N_t P_{U'} G_{U'} h_{U'} PL_{U'}^b(r)\right) \right] \\&= \textit{exp}\left( -2\pi \lambda _U E_{M'_rM'_t} \left[ \left( \int _x^\infty 1 - E_{h_U} \bigg [exp\bigg (\right. \right. \right. \\&\quad -\mu N_tP_{U'}G_{U'}h_{U'}PL_{U'}^b(r)\bigg )\bigg ]\bigg ) r P_{U'}^b(r) dr\bigg ]\bigg ) \\&= \textit{exp}\left( -2\pi \lambda _U E_{M'_r M'_t} \left[ \left( \int _x^\infty 1 \right. \right. \right. \\&\left. \left. \left. \quad - \frac{1}{1 + \frac{\mu N_t P_{U'}G_{U'}h_{U'}PL_{U'}^b(r)}{N_k}}\right) r P_{U'}^b(r) dr\right] \right) \end{aligned}$$
$$\begin{aligned} {{\textbf {L}}}_{I_{S'}}(\mu )&= E[e^{-qI_{S'}}] \\&= E\left[ exp\left( -q \sum _{S' \ne S} P_{S'}G_{S'}h_{S'}PL_{S'}^b(r)\right) \right] \\&= E\left[ \prod _{S'\in \frac{\Phi _{UAV}}{b(0,X)}} exp\left( -q P_{S'}G_{S'}h_{S'}PL_{S'}^b(r)\right) \right] \\&= {\textit{exp}}\left( \left[ \left( \int _x^\infty 1 - E_{h_S} \left[ {\textit{exp}}\left( -q P_{S'}G_{S'}h_{S'}PL_{S'}^b(r)\right) \right] \right) \right. \right. \\&\quad \left. \left. r P_{S'}^b(r) dr\right] \right) \\&= {\textit{exp}}\left( \left[ \left( \int _x^\infty 1 - \frac{1}{1 + \frac{q P_{S'}G_{S'}h_{S'}PL_{S'}^b(r)}{N_k}}\right) r P_{S'}^b(r) dr\right] \right) \end{aligned}$$

Appendix E

$$\begin{aligned} \gamma _U&= \frac{N_tq P_{U}G_{U}h_{U}PL_{U}^{-1}(r)}{I_{U'}+I_S+\sigma ^2} \\&= \frac{\frac{N_t P_{U}G_{U}h_{U}PL_{U}^{-1}(r)}{\sigma ^2}}{\frac{I}{\sigma ^2}+1} \\&= \frac{\bar{\gamma }_U h}{\bar{\gamma }_I h + 1} \\&= \frac{V}{Y} \end{aligned}$$

where \(h = h_U = h_S\), \(\bar{\gamma }_U = \frac{N_t P_{U}G_{U}h_{U}PL_{U}^{-1}(r)}{\sigma ^2}\) and \(\bar{\gamma }_I = \frac{(N_t P_{U'}G_{U'}h_{U}PL_{U'}^{b}(r))+(P_SG_SPL_S^k(r))}{\sigma ^2}\) Now, \(f_V(v) = \frac{f_h(\frac{v}{\bar{\gamma }_U})}{\bar{\gamma }_U}\) and \(f_Y(y) = \frac{f_h(\frac{y}{\bar{\gamma }_I} - \frac{1}{\bar{\gamma }_I})}{\bar{\gamma }_I}\) By applying the confluent hypergeometric function [34], we obtain:

$$\begin{aligned} f_{\gamma U}(\gamma _U; \bar{\gamma }_U, \bar{\gamma }_I, m)&= \int _1^\infty y f_Y(y) f_V(y \gamma _U) dy \\&= \frac{1}{2 \pi \gamma _U \Gamma (m)} m^{2m} \left( \frac{1}{\bar{\gamma }_I}\right) ^n \left( \frac{\gamma _U}{\bar{\gamma }_U}\right) ^m \\&\quad \times {\textit{exp}}\left( \frac{m(\bar{\gamma }_U - \bar{\gamma }_I \gamma _U)}{2 \bar{\gamma }_U \bar{\gamma }_I } \right) \\&\quad \times m \left( \frac{\gamma _U}{\bar{\gamma }_U} + \frac{1}{\bar{\gamma }_I} \right) ^{\frac{1}{2}-m}\\&\quad \times \left( K_{\frac{1}{2}-m}\left( \frac{m(\bar{\gamma }_U - \bar{\gamma }_I \gamma _U)}{2 \bar{\gamma }_U \bar{\gamma }_I }\right) \right. \\&\left. \quad + K_{-\frac{1}{2}-m}\left( \frac{m(\bar{\gamma }_U - \bar{\gamma }_I \gamma _U)}{2 \bar{\gamma }_U \bar{\gamma }_I }\right) \right) \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouamri, M.A., Singh, D., Muthanna, M.A. et al. Performance analysis of UAV multiple antenna-assisted small cell network with clustered users. Wireless Netw 29, 1859–1872 (2023). https://doi.org/10.1007/s11276-023-03240-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03240-9

Keywords

Navigation