Skip to main content
Log in

5G-V2X: standardization, architecture, use cases, network-slicing, and edge-computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular communication is one of the critical technologies in intelligent transportation system to provide connectivity between vehicles, road side units, and pedestrians. Multiple wireless accessing technologies designed to provide connectivity in vehicular networks such as conventional Wi-Fi, IEEE 802.11p, and cellular communications. Recently, cellular V2X (C-V2X) is standardized and designed by the third generation partnership project (3GPP) for automotive services. C-V2X supports two communication modes through a single platform to provide both Wi-Fi and cellular communication. LTE-V2X is the current 3GPPRelease 14 standard that has many enhancements to provide the new 3GPPRelease 16 for the new 5G radio generation. 5G-new radio (NR) is expected to address the automotive capabilities, improvement, and services for 2020 and beyond. 5G-NR becomes a competitive technology compared with other wireless technologies because of extensive coverage, high capacity, high reliability, and low delay support. In this paper, we propose the Optimizing of 5G with V2X, and analyzing the current V2X standards, introducing the development of 5G, challenges, features, requirements, design, and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhou, H., Xu, W., Chen, J., & Wang, W. (2020). Evolutionary V2X technologies toward the internet of vehicles: Challenges and opportunities. Proceedings of the IEEE, 108(2), 308–323.

    Article  Google Scholar 

  2. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162–1182.

    Article  Google Scholar 

  3. Xu, Q., Mak, T., Ko, J., & Sengupta, R. (2004). Vehicle-to-vehicle safety messaging in DSRC. In Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks (pp. 19–28). ACM.

  4. Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The Kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3354–3361). IEEE.

  5. Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—Performance evaluation. Transportation Research Part C: Emerging Technologies, 68, 168–184.

    Article  Google Scholar 

  6. CAR 2 CAR Journal 22 online. (n.d.). Retrieved April 10, 2019, from https://www.car-2-car.org/.

  7. Shulman, M., & Deering, R. (2007). Vehicle safety communications in the United States. In Conference on experimental safety vehicles.

  8. Sun, S. H., Hu, J. L., Peng, Y., Pan, X. M., Zhao, L., & Fang, J. Y. (2016). Support for vehicle-to-everything services based on LTE. IEEE Wireless Communications, 23(3), 4–8.

    Article  Google Scholar 

  9. Ngmn - Next Generation Mobile Networks. (n.d.). 5G white paper. Retrieved April 10, 2019, from https://www.ngmn.org/5g-white-paper.html.

  10. Temel, S., Vuran, M. C., Lunar, M. M., Zhao, Z., Salam, A., Faller, R. K., et al. (2018). Vehicle-to-barrier communication during real-world vehicle crash tests. Computer Communications, 127, 172–186.

    Article  Google Scholar 

  11. Hagenauer, F., Sommer, C., Higuchi, T., Altintas, O., & Dressler, F. (2018). Vehicular micro cloud in action: On gateway selection and gateway handovers. Ad Hoc Networks, 78, 73–83.

    Article  Google Scholar 

  12. Abdel Hakeem, S. A., Hady, A. A., & Kim, H. (2020). Optimizing 5G in V2X communications: Technologies, requirements, challenges, and standards. In Fundamental and supportive technologies for 5G mobile networks (pp. 269–308). IGI Global.

  13. Bianchi, G., Fratta, L., & Oliveri, M. (1996). Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs. In Proceedings of PIMRC’96-7th international symposium on personal, indoor, and mobile communications (Vol. 2, pp. 392–396). IEEE.

  14. Lee, J., Kim, Y., Kwak, Y., Zhang, J., Papasakellariou, A., Novlan, T., et al. (2016). LTE-advanced in 3GPP Rel-13/14: An evolution toward 5G. IEEE Communications Magazine, 54(3), 36–42.

    Article  Google Scholar 

  15. Patzold, M. (2018). 5G readiness on the horizon [mobile radio]. IEEE Vehicular Technology Magazine, 13(1), 6–13.

    Article  Google Scholar 

  16. Yin, J., ElBatt, T., Yeung, G., Ryu, B., Habermas, S., Krishnan, H., & Talty, T. (2004). Performance evaluation of safety applications over DSRC vehicular ad hoc networks. In Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks (pp. 1–9). ACM.

  17. Samara, G., Al-Salihy, W. A., & Sures, R. (2010). Security analysis of vehicular ad hoc networks (VANET). In 2010 Second international conference on network applications, protocols and services (pp. 55–60). IEEE.

  18. Haidar, F., Kaiser, A., & Lonc, B. (2017). On the performance evaluation of vehicular PKI protocol for V2X communications security. In 2017 IEEE 86th vehicular technology conference (VTC-Fall) (pp. 1–5). IEEE.

  19. Al-Kahtani, M. S. (2012). Survey on security attacks in vehicular ad hoc networks (VANETs). In 2012 6th international conference on signal processing and communication systems (pp. 1–9). IEEE.

  20. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

    Article  Google Scholar 

  21. Tseng, Y. L. (2015). LTE-advanced enhancement for vehicular communication. IEEE Wireless Communications, 22(6), 4–7.

    Article  Google Scholar 

  22. Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., et al. (2017). Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70–76.

    Article  Google Scholar 

  23. Zhao, C., Huang, L., Zhao, Y., & Du, X. (2017). Secure machine-type communications toward LTE heterogeneous networks. IEEE Wireless Communications, 24(1), 82–87.

    Article  Google Scholar 

  24. Ahmed, K. J., & Lee, M. J. (2018). Secure LTE-based V2X service. IEEE Internet of Things Journal, 5(5), 3724–3732.

    Article  Google Scholar 

  25. May, M., Ilnseher, T., Wehn, N., & Raab, W. (2010). A 150Mbit/s 3GPP LTE turbo code decoder. In Proceedings of the conference on design, automation and test in Europe (pp. 1420–1425). European Design and Automation Association.

  26. Shi, Y. (2015). LTE-V: A cellular-assisted V2X communication technology. In ITU workshop.

  27. Papathanassiou, A., & Khoryaev, A. (2017). Cellular V2X as the essential enabler of superior global connected transportation services. IEEE 5G Tech Focus, 1(2), 1–2.

    Google Scholar 

  28. Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy, 41(5–6), 422–433.

    Article  Google Scholar 

  29. Yilmaz, O. N., Wang, Y. P. E., Johansson, N. A., Brahmi, N., Ashraf, S. A., & Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1190–1195). IEEE.

  30. Ghosh, A. (2018). 5G new radio (NR): Physical layer overview and performance. In IEEE communication theory workshop (pp. 1–38).

  31. Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E. C., Clemente, A., Destino, G., et al. (2017). Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics, 100(10), 790–808.

    Article  Google Scholar 

  32. Mavromatis, I., Tassi, A., Rigazzi, G., Piechocki, R. J., & Nix, A. (2018). Multi-radio 5G architecture for connected and autonomous vehicles: Application and design insights. arXiv preprint arXiv:1801.09510.

  33. Islam, S. M., Kim, J. M., & Kwak, K. S. (2015). On non-orthogonal multiple access (NOMA) in 5G systems. The Journal of Korean Institute of Communications and Information Sciences, 40(12), 2549–2558.

    Article  Google Scholar 

  34. Di, B., et al. (2017). V2X meets NOMA: Non-orthogonal multiple access for 5G-enabled vehicular networks. IEEE Wireless Communications, 24(6), 14–21.

    Article  Google Scholar 

  35. Kim, H. T., Park, B. S., Oh, S. M., Song, S. S., Kim, J. M., Kim, S. H., et al. (2017). A 28 GHz CMOS direct conversion transceiver with packaged antenna arrays for 5G cellular system. In 2017 IEEE radio frequency integrated circuits symposium (RFIC) (pp. 69–72). IEEE.

  36. del Peral-Rosado, J. A., López-Salcedo, J. A., Kim, S., & Seco-Granados, G. (2016). Feasibility study of 5G-based localization for assisted driving. In 2016 International conference on localization and GNSS (ICL-GNSS) (pp. 1–6). IEEE.

  37. Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., & Demestichas, P. (2014). 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Vehicular Technology Magazine, 9(3), 39–46.

    Article  Google Scholar 

  38. Naik, G., Liu, J., & Park, J. M. J. (2018). Coexistence of wireless technologies in the 5 GHz bands: A survey of existing solutions and a roadmap for future research. IEEE Communications Surveys & Tutorials, 20(3), 1777–1798.

    Article  Google Scholar 

  39. Boban, M., Kousaridas, A., Manolakis, K., Eichinger, J., & Xu, W. (2017). Use cases, requirements, and design considerations for 5G V2X. arXiv preprint arXiv:1712.01754.

  40. Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2017). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications, 24(6), 38–45.

    Article  Google Scholar 

  41. Jahn, A., David, K., & Engel, S. (2015). 5G/LTE based protection of vulnerable road users: Detection of crossing a curb. In 2015 IEEE 82nd vehicular technology conference (VTC2015-Fall) (pp. 1–5). IEEE.

  42. Ye, H., Liang, L., Li, G. Y., Kim, J., Lu, L., & Wu, M. (2018). Machine learning for vehicular networks: Recent advances and application examples. IEEE Vehicular Technology Magazine, 13(2), 94–101.

    Article  Google Scholar 

  43. Fallgran, M., Dillinger, M., Li, Z., Vivier, G., Abbas, T., Alonso-Zarate, J., et al. (2018). On selected V2X technology components and enablers from the 5GCAR project. In 2018 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–5). IEEE.

  44. The MobileBroadband Standard. SA3-Security, 10 Apr. 2019, www.3gpp.org/specifications-groups/sa-plenary/sa3-security.

  45. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  46. Elayoubi, S. E., Fallgren, M., Spapis, P., Zimmermann, G., Martín-Sacristán, D., Yang, C., et al. (2016). 5G service requirements and operational use cases: Analysis and METIS II vision. In 2016 European conference on networks and communications (EuCNC) (pp. 158–162). IEEE.

  47. Cattoni, A. F., Chandramouli, D., Sartori, C., Stademann, R., & Zanier, P. (2015). Mobile low latency services in 5G. In 2015 IEEE 81st vehicular technology conference (VTC Spring) (pp. 1–6). IEEE.

  48. Zafeiropoulos, A., Gouvas, P., Fotopoulou, E., Tsiolis, G., Xirofotos, T., Bonnet, J., et al. (2018). Enabling vertical industries adoption of 5G technologies: A cartography of evolving solutions. In 2018 European conference on networks and communications (EuCNC) (pp. 1–9). IEEE.

  49. Norrman, K., Näslund, M., & Dubrova, E. (2016). Protecting IMSI and user privacy in 5G networks. In Proceedings of the 9th EAI international conference on mobile multimedia communications (pp. 159–166). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  50. Khan, U., Agrawal, S., & Silakari, S. (2015). A detailed survey on misbehavior node detection techniques in vehicular ad hoc networks. In Information systems design and intelligent applications (pp. 11–19). New Delhi: Springer.

  51. Fifth Generation Communication Automotive Research and innovation. (2020). Deliverable D1.3 5GCAR final project report version: V1.0 2019-07-31. Retrieved May 9, 2020, from https://5gcar.eu/wp-content/uploads/2019/08/5GCAR_D1.3_v1.0.pdf.

  52. Condoluci, M., Gallo, L., Mussot, L., Kousaridas, A., Spapis, P., Mahlouji, M., et al. (2019). 5G V2X system-level architecture of 5GCAR project. Future Internet, 11(10), 217.

    Article  Google Scholar 

  53. Barciela, A. E. F. (2019). New mobility services and how they will be affected by the connectivity. In Electronic components and systems for automotive applications (pp. 231–237). Cham: Springer.

  54. Campolo, C., Molinaro, A., Iera, A., Fontes, R. R., & Rothenberg, C. E. (2018). Towards 5G network slicing for the V2X ecosystem. In 2018 4th IEEE conference on network softwarization and workshops (NetSoft) (pp. 400–405). IEEE.

  55. Mouawad, N., Naja, R., & Tohme, S. (2019). Inter-slice mobility management solution in V2X environment. In 2019 International conference on wireless and mobile computing, networking and communications (WiMob) (pp. 1–6). IEEE.

  56. Storck, C. R., & Duarte-Figueiredo, F. (2019). A 5G V2X ecosystem providing internet of vehicles. Sensors, 19(3), 550.

    Article  Google Scholar 

  57. Samdanis, K., Prasad, A., Chen, M., & Hwang, K. (2018). Enabling 5G verticals and services through network softwarization and slicing. IEEE Communications Standards Magazine, 2(1), 20–21.

    Article  Google Scholar 

  58. Husain, S., Kunz, A., Prasad, A., Pateromichelakis, E., Samdanis, K., & Song, J. (2018). The road to 5G V2X: Ultra-high reliable communications. In 2018 IEEE conference on standards for communications and networking (CSCN) (pp. 1–6). IEEE.

  59. Sahin, T., Klugel, M., Zhou, C., & Kellerer, W. (2018). Virtual cells for 5G V2X communications. IEEE Communications Standards Magazine, 2(1), 22–28.

    Article  Google Scholar 

  60. Emara, M., Filippou, M. C., & Sabella, D. (2018). MEC-assisted end-to-end latency evaluations for C-V2X communications. In 2018 European conference on networks and communications (EuCNC) (pp. 1–9). IEEE.

  61. Boban, M., Manolakis, K., Ibrahim, M., Bazzi, S., & Xu, W. (2016). Design aspects for 5G V2X physical layer. In 2016 IEEE conference on standards for communications and networking (CSCN) (pp. 1–7). IEEE.

  62. Hassan, N., Yau, K. L. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.

    Article  Google Scholar 

  63. Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M., & Taleb, T. (2018). Survey on multi-access edge computing for internet of things realization. IEEE Communications Surveys & Tutorials, 20(4), 2961–2991.

    Article  Google Scholar 

  64. Li, B., Zhang, Y., & Xu, L. (2017). An MEC and NFV integrated network architecture. ZTE Communications, 15(2), 1.

    Google Scholar 

  65. Sciancalepore, V., Giust, F., Samdanis, K., & Yousaf, Z. (2016). A doubletier MEC-NFV architecture: Design and optimisation. In Proceedings of IEEE Conference on standards for communications and networking (CSCN), Berlin, Germany (pp. 1–6).

  66. Carella, G. A., et al. (2017). Prototyping NFV-based multi-access edge computing in 5G ready networks with open baton. In Proceedings of IEEE Conference on Network Softwarization (NetSoft), Bologna, Italy (pp. 1–4).

  67. Blanco, B., et al. (2017). Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput. Stand. Interfaces, 54, 216–228.

    Article  Google Scholar 

  68. Arkko, J., Norrman, K., Näslund, M., & Sahlin, B. (2015). A USIM compatible 5G AKA protocol with perfect forward secrecy. In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 1, pp. 1205–1209). IEEE.

  69. Bhat, A., Gojanur, V., & Hegde, R. (2014). 5G evolution and need: A study. In International conference on electrical, electronics, signals, communication and optimization (EESCO)—2015.

Download references

Acknowledgements

This work was partly supported by Institute of Information and communications Technology Planning and Evaluation (IITP) Grant funded by the Korea government (MSIT) (No. 20200013040012005, Development of Self-Learnable Mobile Recursive Neural Network Processor Technology). It was also supported by Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (N0001883, The Competency Development Program for Industry Specialist). The corresponding author for this paper is HyungWon Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyungWon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Hakeem, S.A., Hady, A.A. & Kim, H. 5G-V2X: standardization, architecture, use cases, network-slicing, and edge-computing. Wireless Netw 26, 6015–6041 (2020). https://doi.org/10.1007/s11276-020-02419-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02419-8

Keywords

Navigation