Skip to main content
Log in

A sequential surrogate-based multiobjective optimization method: effect of initial data set

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Process optimization based on high-fidelity computer simulations or real experimentation is commonly expensive. Therefore, surrogate models are frequently used to reduce the computational or experimental cost. However, surrogate models need to achieve a maximum accuracy with a limited number of sampled points. Sequential sampling is a procedure in which sequentially surrogates are fitted and each surrogate defines the points that need to be sampled and used to fit the next model. For optimization purposes, points are sampled on regions of high potential for the optimal solutions. In this work, we first compared the effect of using different initial sets of points (experimental designs) in a sequential surrogate-based multiobjective optimization method. The optimization method is tested on five benchmark problems and the performance is quantified based on the total number of function evaluations and the quality of the final Pareto Front. Then an industrial applications on titanium welding is presented to show the use of the method. The case study is based on real experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong, S., Chunsheng, E., Fan, B., Danai, K., & Kazmer, D. O. (2007). Process-driven input profiling for plastics processing. Journal of Manufacturing Science and Engineering, 129(4), 802–809.

    Article  Google Scholar 

  2. Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. The Journal of Mechanical Design, 129(4), 370–380.

    Article  Google Scholar 

  3. Litvinchev, I., López, F., Escalante, H. J., & Mata, M. (2011). A milp bi-objective model for static portfolio selection of R&D projects with synergies. Journal of Computer and Systems Sciences International, 50(6), 942–952.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, H. (2012). Computer modeling for injection molding: Simulation, optimization, and control (pp. 230–260). Hoboken: Wiley.

    Google Scholar 

  5. Villarreal-Marroquin, M. G., Po-Hsu, C., Mulyana, R., Santner, T. J., Dean, A. M., & Castro, J. M. (2016). Multiobjective optimization of injection molding using a calibrated predictor based on physical and simulated data. Polymer Engineering and Science, 57(3), 248–257.

    Article  Google Scholar 

  6. Montalvo-Urquizo, J., Niebuhr, C., Schmidt, A., & Villarreal-Marroquin, M. G. (2018). Reducing deformation, stress, and tool wear during milling processes using simulation-based multiobjective optimization. The International Journal of Advanced Manufacturing Technology, 96(4–8), 1859–1873.

    Article  Google Scholar 

  7. Kok, S. W., & Tapabrata, R. (2005). A framework for design optimization using surrogates. Engineering Optimization, 37(7), 685–703.

    Article  MathSciNet  Google Scholar 

  8. Barton, R. R. (2009). Simulation optimization using metamodels. In: Winter simulation conference (pp. 230–238).

  9. Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Applied Soft Computing, 10(4), 1257–1273.

    Article  Google Scholar 

  10. Avila-Torres, P., Caballero, R., Litvinchev, I., Lopez-Irarragorri, F., & Vasant, P. (2018). The urban transport planning with uncertainty in demand and travel time: A comparison of two defuzzification methods. Journal of Ambient Intelligence and Humanized Computing, 9(3), 843–856.

    Article  Google Scholar 

  11. Cheng, J., Zhenyu, L., & Jianrong, T. (2013). Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. The International Journal of Advanced Manufacturing Technology, 66(5), 907–916.

    Article  Google Scholar 

  12. Mosquera-Artamonov, J. D., Vasco-Leal, J. F., Acosta-Osorio, A. A., Hernandez-Rios, I., d Ventura-Ramos, E., Gutiérrez-Cortez, E., et al. (2016). Optimization of castor seed oil extraction process using response surface methodology. Ingeniería e Investigación, 36(3), 82–88.

    Article  Google Scholar 

  13. Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: Survey and recommendations. Engineering With Computers, 17(2), 129–150.

    Article  MATH  Google Scholar 

  14. Litvinchev, I., Rios, Y. A., Özdemir, D., & Hernández-Landa, L. G. (2014). Multiperiod and stochastic formulations for a closed loop supply chain with incentives. Journal of Computer and Systems Sciences International, 53(2), 201–211.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mehmani, A., Zhang, J.,Chowdhury, S., & Messac, A. (2012). Surrogate-based design optimization with adaptive sequential sampling. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, 1527.

  16. Jin, R., Chen, W., & Sudjianto, A. (2002). On sequential sampling for global metamodeling in engineering design. In: ASME 2002 international design engineering technical conferences and computers and information in engineering conference (pp. 539–548).

  17. Jiang, P., Longchao, C., Qi, Z., Zhongmei, G., Youmin, R., & Xinyu, S. (2016). Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 86(9), 2473–2483.

    Article  Google Scholar 

  18. Liu, H.,Xu, S., & Wang, X. (2016). Sampling strategies and metamodeling techniques for engineering design: comparison and application. In: ASME Turbo Expo 2016: Turbomachinery technical conference and exposition. American Society of Mechanical Engineers.

  19. Hu, W., Fan, Y., Enying, L., & Guangyao, L. (2016). A framework for design optimization using surrogates. Engineering Optimization, 48(8), 1432–1458.

    Article  Google Scholar 

  20. Teng, L., Di, L., Xin, C., Xiaosong, G., & Li, L. (2016). A deterministic sequential maximin Latin hypercube design method using successive local enumeration for meta-modelbased optimization. Engineering Optimization, 48(6), 1019–1036.

    Article  MathSciNet  Google Scholar 

  21. Castelletti, A., Pianosi, A., Soncini-Sessa, R., & Antenucci, J. P. (2010). A multiobjective response surface approach for improved water quality planning in lakes and reservoirs. Water Resources Research, 46(6), 1–16.

    Article  Google Scholar 

  22. Li, Jun, Xiaoyong, Yang, Chengzu, Ren, Guang, Chen, & Wang, Yan. (2015). Multiobjective optimization of cutting parameters in Ti–6Al–4V milling process using nondominated sorting genetic algorithm-II. The International Journal of Advanced Manufacturing Technology, 76(5), 941–953.

    Article  Google Scholar 

  23. Zhang, Junhong, Jian, Wang, Jiewei, Lin, Qian, Guo, Kongwu, Chen, & Liang, M. (2016). Multiobjective optimization of injection molding process parameters based on Opt LHD, EBFNN, and MOPSO. The International Journal of Advanced Manufacturing Technology, 85(9–12), 2857–2872.

    Article  Google Scholar 

  24. Guodong, C., Xu, H., Guiping, L., Chao, J., & Ziheng, Z. (2012). An efficient multi-objective optimization method for black-box functions using sequential approximate technique. Applied Soft Computing, 12(1), 14–27.

    Article  Google Scholar 

  25. Kitayama, S., Srirat, J., Arakawa, M., & Yamazaki, K. (2013). Sequential approximate multi-objective optimization using radial basis function network. Structural and Multidisciplinary Optimization, 48(3), 501–515.

    Article  MathSciNet  Google Scholar 

  26. Yun, Y., Yoon, M., & Nakayama, H. (2009). Multi-objective optimization based on meta-modeling by using support vector regression. Optimization and Engineering, 10(2), 167–181.

    Article  MathSciNet  MATH  Google Scholar 

  27. Villarreal-Marroquin, M. G., Cabrera-Rios, M., & Castro, J. M. (2011). A multicriteria simulation optimization method for injection molding. Journal of Polymer Engineering, 31(5), 397–407.

    Google Scholar 

  28. Villarreal-Marroquin, M. G., Svenson, J. D., Sun, F., Santne, T. J., Dean, A. M., & Castro, J. M. (2013). A comparison of two metamodel-based methodologies for multiple criteria simulation optimization using an injection molding case study. Journal of Polymer Engineering, 33(3), 193–209.

    Article  Google Scholar 

  29. Svenson, J. D. (2011). Computer experiments: Multiobjective optimization and sensitivity analysis. Ph.D Thesis, The Ohio State University, 76:5, pp. 941–953.

  30. Williams, B. J.,Santner, T. J., Notz, W. I., & Lehman, J. S. (2010). Sequential design of computer experiments for constrained optimization. In: Statistical modelling and regression structures (pp. 449–472).

  31. Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: An introduction. In: Multi-objective evolutionary optimisation for product design and manufacturing (pp. 3–34).

  32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

  33. Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    MathSciNet  MATH  Google Scholar 

  34. Garcia, S., & Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. Journal of Machine Learning Research, 9, 2677–2694.

    MATH  Google Scholar 

  35. Auger, A., Bader, J., . Brockhoff, D., & Zitzler E. (2009). Theory of the hypervolume indicator: Optimal \(\mu\)-distributions and the choice of the reference point. In: Proceedings of the tenth ACM SIGEVO workshop on foundations of genetic algorithms, FOGA ’09 (pp. 87–102). New York, NY.

  36. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  37. Cruz, C., Hiyane, G., Mosquera-Artamonov, J. D., & Salgado, J. M. (2014). Optimization of the GTAW process for Ti6Al4V plates. Soldagem and Inspeção, 19, 2–9.

    Article  Google Scholar 

  38. Cruz-Gonzalez, C. E., Gala-Barron, H. I., Mosquera-Artamonov, J. D., & Gamez-Cuatzin, H. (2016). Efecto de la corriente pulsada en el proceso de soldadura GTAW en titanio 6Al4V con y sin metal de aporte. Revista de Metalurgia, 52(3), 1–11.

    Google Scholar 

  39. Junaid, M., Baig, M. N., Shamir, M., Khan, F. N., Rehman, K., & Haider, J. (2017). A comparative study of pulsed laser and pulsed TIG welding of Ti–5Al–2.5 Sn titanium alloy sheet. Journal of Materials Processing Technology, 242, 24–38.

    Article  Google Scholar 

  40. Nandagopa, K., & Kailasanathan, C. (2016). Analysis of mechanical properties and optimization of gas tungsten Arc welding (GTAW) parameters on dissimilar metal titanium (6Al 4V) and aluminium 7075 by Taguchi and ANOVA techniques. Journal of Alloys and Compounds, 682, 503–516.

    Article  Google Scholar 

  41. Thepsonthi, Thanongsak, & Özel, Tuğrul. (2012). Multi-objective process optimization for micro-end milling of Ti–6Al–4V titanium alloy. The International Journal of Advanced Manufacturing Technology, 63(9), 903–914.

    Article  Google Scholar 

  42. Wang, X., Shi, Y., Ding, D., & Gu, X. (2016). Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning. Engineering Optimization, 48(2), 299–316.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Mexican National Council for Science and Technology (CONACYT) through the PhD. Scholarship of J.D. Mosquera-Artamonov. The author also would like to thank Professor Mauricio Cabrera-Rios for early contributions on the development of the optimization method used here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Daniel Mosquera-Artamonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See the Figs. 78910111213 and 14.

Fig. 7
figure 7

Comparison of final Pareto Sets for MOP1: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, orange, yellow, green) represent the different repeats (Color figure online)

Fig. 8
figure 8

Comparison of final Pareto Fronts for MOP1: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, orange, yellow, green) represent the different repeats (Color figure online)

Fig. 9
figure 9

Comparison of final Pareto Sets for MOP2: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, orange, yellow, olive) represent the different repeats (Color figure online)

Fig. 10
figure 10

Comparison of final Pareto Fronts for MOP2: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, orange, yellow, olive) represent the different repeats (Color figure online)

Fig. 11
figure 11

Comparison of final Pareto Sets for MOP3: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, orange, yellow, olive) represent the different repeats (Color figure online)

Fig. 12
figure 12

Comparison of final Pareto Fronts for MOP3: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, orange, yellow, olive) represent the different repeats (Color figure online)

Fig. 13
figure 13

Comparison of final Pareto Sets for MOP4: a True (dark gray (\(x_3=0.5\))), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, magenta, scarlet, orange, yellow, olive, green) represent different repeats (Color figure online)

Fig. 14
figure 14

Comparison of final Pareto Fronts for MOP4: a True (dark gray), b CCI (o), c LHD (+), d D-Opt (x), e Rand (\(*\)), f Sobol-Seq (\(\diamond\)). Different colors (light blue, blue, purple, magenta, scarlet, orange, yellow, olive, green) represent different repeats (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarreal-Marroquin, M.G., Mosquera-Artamonov, J.D., Cruz, C.E. et al. A sequential surrogate-based multiobjective optimization method: effect of initial data set. Wireless Netw 26, 5727–5750 (2020). https://doi.org/10.1007/s11276-019-02212-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02212-2

Keywords

Navigation