Skip to main content
Log in

Multi-parameter performance analysis for decentralized cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we investigate the impact of primary user activity, secondary user activity, interface switching, channel fading and finite-length queuing on the performance of decentralized cognitive radio networks. The individual processes of these service-disruptive effects are modeled as Markov chains based on cross-layer information locally available at the network nodes. A queuing analysis is conducted and various performance measures are derived regarding the packet loss, throughput, spectral efficiency, and packet delay distribution. Numerical results demonstrate the impact of various system parameters on the system performance, providing insights for cross-layer design and autonomous decision making in decentralized cognitive radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Mitola, J., et al. (1999). Cognitive radio: Making software radios more persona. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Jondral, F. K. (2005). Software-defined radio—Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, vol 2005(3). Article ID 652784.

  4. Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  5. Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  6. Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press, ISBN: 978-0-521-89847-8.

  7. Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.

    Article  Google Scholar 

  8. Yang, Z., Cheng, G., Liu, W., Yuan, W., & Cheng, W. (2008). Local coordination based routing and spectrum assignment in multi-hop cognitive radio networks. Mobile Networks and Applications, 13(1–2), 67–81.

    Article  Google Scholar 

  9. Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Queuing with adaptive modulation and coding over wireless link: Cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4, 1142–1153.

    Article  Google Scholar 

  10. Le, L. B., Hossain, E., & Alfa, A. S. (2006). Delay statistics and throughput performance for multi-rate wireless networks under ARQ and multiuser diversity. IEEE Transactions on Wireless Communications, 5(11), 3234–3243.

    Article  Google Scholar 

  11. Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface Ad Hoc wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review, 10(1), 31–43.

    Article  Google Scholar 

  12. Jiang, H., Lai, L., Fan, R., & Poor, H. V. (2009). Optimal selection of channel sensing order in cognitive radio. IEEE Transactions on Wireless Communications, 8(1), 297–307.

    Article  Google Scholar 

  13. Kim, H., & Shin, K. (2008). Efficient Discovery of Spectrum Opportunities with MAC-Layer Sensing in Cognitive Radio Networks. IEEE Transactions on Mobile Computing, 7(5), 533–545.

    Article  MathSciNet  Google Scholar 

  14. Hou, T., Shi, Y., & Sherali, H. D. (2008). Spectrum sharing for multi-hop networking with cognitive radios. IEEE Journal on Selected Areas in Communications, 26(1), 146–154.

    Article  Google Scholar 

  15. Tang, J., Hincapie, R., Xue, G., Zhang, W., & Bustamante, R. (2010). Fair bandwidth allocation in wireless mesh networks with cognitive radios. IEEE Transactions on Vehicular Technology, 59(3), 1487–1496.

    Article  Google Scholar 

  16. Shiang, H. P., & van der Schaar, M. (2009). Distributed resource management in multi-hop cognitive radio networks for delay sensitive transmission. IEEE Transactions on Vehicular Technology, 58(2), 941–953.

    Article  Google Scholar 

  17. Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio. IEEE Transactions on Information Theory, 52(5), 1813–1827.

    Article  MATH  MathSciNet  Google Scholar 

  18. Jafar, S. A., & Srinivasa, S. (2007). Capacity limits of cognitive radio with distributed and dynamic spectral activity. IEEE Journal on Selected Areas in Communications, 25(3), 529–537.

    Article  Google Scholar 

  19. Shankar, S. (2007). Squeezing the most out of cognitive radio: a joint MAC/PHY perspective. IEEE Conference on Acoustics Speech and Signal Processing (ICASSP), 4, 1361–1364.

    Google Scholar 

  20. Rashid, M., Hossain, M. J., Hossain, E., & Bhargava, V. K. (2009). Opportunistic spectrum scheduling for multiuser cognitive radio: a queuing analysis. IEEE Transactions on Wireless Communications, 8(10), 5259–5269.

    Article  Google Scholar 

  21. Shi, Z., Beard, C., & Mitchell, K. (2012). Competition, cooperation, and optimizaion in multi-hop csma networks with correlated traffic. International Journal of Next-Generation Computing, 3(3).

  22. Shi, Z., Beard, C., & Mitchell, K. (November 2011). Competition, cooperation, and optimization in multi-hop CSMA networks. In Proceedings of the 8th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (PE-WASUN ‘11).

  23. Felegyhazi, M., & Hubaux, J.-P. (2006). Game theory in wireless networks: A tutorial. EPFL—Switzerland, EPFL Technical report.

  24. Anderson, T. W., & Goodman, L. A. (1957). Statistical inference about Markov chains. The Annals of Mathematical Statistics, 28(1), 89–110.

    Article  MATH  MathSciNet  Google Scholar 

  25. Nakagami, M. (1960). The m-distribution—A general formula for intensity distribution of rapid fading. In W. G. Hoffman (Ed.), Statistical methods in radio wave propagation. Oxford: Pergamon Press.

  26. Cinlar, E. (1975). Introduction to stochastic processes. Englewood Cliffs: Prentice-Hall, ISBN: 0-13-498089-1.

Download references

Acknowledgments

This paper has been partially funded by the CROSSFIRE (MITN 317126) and co-financed by the EU (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysis Xenakis.

Appendix: Two-state SU activity model

Appendix: Two-state SU activity model

Let \( X_{n,t} \in \varOmega \left( {X_{n,t} } \right) := \{ 0,1\} \) denote the process that describes the SU activity in channel n at time t, where X n,t  = 1 if SU activity disrupts the tagged CR node’s communications in channel n at time t, or X n,t  = 0 otherwise. Taking into account the results in Sect. 3.5, it follows that the SU activity state X n,t  = 0 corresponds to a residual time of W n,t  = 0. As a result, we have:

$$ X_{n,t} = \left\{ {\begin{array}{*{20}c} 0 & {if \, W_{n,t} = 0} \\ 1 & {otherwise} \\ \end{array} } \right. $$
(37)

From (37), it follows that \( P\left( {X_{n,t + 1} = 0|X_{n,t} = 0} \right) = P\left( {W_{n,t + 1} = 0|W_{n,t} = 0} \right) \). Hence, X n,t can be modeled as a two-state MC with transition matrix obtained by (38) and (39).

$$ p_{00}^{{X_{n} }} = p_{00}^{{W_{n} }} \;{\text{and}}\;p_{01}^{{X_{n} }} = 1 - p_{00}^{{X_{n} }} $$
(38)
$$ p_{11}^{{X_{n} }} = \frac{{\left( {1 - \pi_{0}^{{W_{n} }} } \right) - \pi_{0}^{{W_{n} }} \cdot \left( {1 - p_{00}^{{W_{n} }} } \right)}}{{\left( {1 - \pi_{0}^{{W_{n} }} } \right)}}\;{\text{and}}\;p_{10}^{{X_{n} }} = 1 - p_{11}^{{X_{n} }} $$
(39)

Accordingly, the limiting distribution of X n is given as \( \pi_{0}^{{X_{n} }} = \pi_{0}^{{W_{n} }} \) and \( \pi_{1}^{{X_{n} }} = 1 - \pi_{0}^{{X_{n} }} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xenakis, D., Passas, N. & Merakos, L. Multi-parameter performance analysis for decentralized cognitive radio networks. Wireless Netw 20, 787–803 (2014). https://doi.org/10.1007/s11276-013-0635-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0635-4

Keywords

Navigation