Skip to main content
Log in

Metagenomic investigations into the microbial consortia, degradation pathways, and enzyme systems involved in the biodegradation of plastics in a tropical lentic pond sediment

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The exploitation of exciting features of plastics for diverse applications has resulted in significant plastic waste generation, which negatively impacts environmental compartments, metabolic processes, and the well-being of aquatic ecosystems biota. A shotgun metagenomic approach was deployed to investigate the microbial consortia, degradation pathways, and enzyme systems involved in the degradation of plastics in a tropical lentic pond sediment (APS). Functional annotation of the APS proteome (ORFs) using the PlasticDB database revealed annotation of 1015 proteins of enzymes such as depolymerase, esterase, lipase, hydrolase, nitrobenzylesterase, chitinase, carboxylesterase, polyesterase, oxidoreductase, polyamidase, PETase, MHETase, laccase, alkane monooxygenase, among others involved in the depolymerization of the plastic polymers. It also revealed that polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polyethylene terephthalate (PET), and nylon have the highest number of annotated enzymes. Further annotation using the KEGG GhostKOALA revealed that except for terephthalate, all the other degradation products of the plastic polymers depolymerization such as glyoxylate, adipate, succinate, 1,4-butanediol, ethylene glycol, lactate, and acetaldehyde were further metabolized to intermediates of the tricarboxylic acid cycle. Taxonomic characterization of the annotated proteins using the AAI Profiler and BLASTP revealed that Pseudomonadota members dominate most plastic types, followed by Actinomycetota and Acidobacteriota. The study reveals novel plastic degraders from diverse phyla hitherto not reported to be involved in plastic degradation. This suggests that plastic pollution in aquatic environments is prevalent with well-adapted degrading communities and could be the silver lining in mitigating the impacts of plastic pollution in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data, metadata, and sequence reads of the metagenome used in this study have been deposited in the GenBank Sequence Read Archive under the accession number PRJNA1076081 (https://www.ncbi.nlm.nih.gov/sra/PRJNA1076081). All data generated or analyzed during this study are included in this published article.

References

  • Aarthy M, Puhazhselvan P, Aparna R et al (2018) Growth-associated degradation of aliphatic-aromatic copolyesters by Cryptococcus sp. MTCC 5455. Polym Degrad Stabil 152:20–28

    Article  CAS  Google Scholar 

  • Abraham J, Ghosh E, Mukherjee P, Gajendiran A (2017) Microbial degradation of low-density polyethylene. Environ Prog Sustain Energy 36(1):147–154

    Article  CAS  Google Scholar 

  • Ahmed T, Shahid M, Azeem F et al (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25:7287–7298

    Article  CAS  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand-conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64(1):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali W, Ali H, Gillani S, Zinck P, Souissi S (2023) Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environ Chem Lett 21:1761–1786

    Article  CAS  Google Scholar 

  • Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P (2022) A brief review of poly (Butylene Succinate) (PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications. Polymers (basel) 14(4):844

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amelia TSM, Khalik WMAWM, Ong MC, Shao YT, Pan H-J, Bhubalan K (2021) Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog Earth Planet Sci 8:12

    Article  Google Scholar 

  • APHA, (1965). Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington

  • APHA, (1998). Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington

  • Austin HP, Allen MD, Donohoe BS et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci USA 115(19):E4350–E4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai P (2019) Properties of biobased packaging material. Biobased polymers: properties and applications in packaging. Elsevier, Amsterdam, pp 25–110

    Chapter  Google Scholar 

  • Ballerstedt H, Tiso T, Wierckx N et al (2021) MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environ Sci Eur 33(1):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal M, Santhiya D, Sharma JG (2021) Behavioural mechanisms of microplastic pollutants in marine ecosystem: challenges and remediation measurements. Water Air Soil Pollut 232:372

    Article  CAS  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Phil Trans R Soc B 364:1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bher A, Mayekar PC, Auras RA, Schvezov CE (2022) Biodegradation of biodegradable polymers in mesophilic aerobic environments. Int J Mol Sci 23(20):12165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi S, Tan B, Soule JL, Sobkowicz MJ (2018) Enzymatic degradation of poly (butylene succinate-co-hexamethylene succinate). Polym Degrad Stab 155:9–14

    Article  CAS  Google Scholar 

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    Article  CAS  PubMed  Google Scholar 

  • Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179

    Article  CAS  PubMed  Google Scholar 

  • Butbunchu N, Pathom-Aree W (2019) Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Front Microbiol 10:2834

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stab 137:251–271

    Article  CAS  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Dai L, Ma L, Guo RT (2020) Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem 4(3):114–126

    Article  PubMed  Google Scholar 

  • Chopra SL, Kanwar JS (1998) Analytical agricultural chemistry. MacMillian Press, London

    Google Scholar 

  • Chua TK, Tseng M, Yang MK (2013) Degradation of poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T–2. AMB Exp 3(1):8

    Article  Google Scholar 

  • Dai G, Cui L, Song L et al (2005) Terephthalic acid occupational exposure and its effect on organ functions in fiber workers. Environ Toxicol Pharmacol 20(1):209–214

    Article  CAS  PubMed  Google Scholar 

  • Danso D, Schmeisser C, Chow J et al (2018) New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol 84(8):e02773-e2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 15(5):7064–7123

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galgani L, Loiselle SA (2021) Plastic pollution impacts on marine carbon biogeochemistry. Environ Pollut 268(Pt A):115598

    Article  CAS  PubMed  Google Scholar 

  • Galgani F, Pham CK, Claro F, Consoli P (2018) Marine animal forests as useful indicators of entanglement by marine litter. Mar Pollut Bull 135(8):735–738

    Article  CAS  PubMed  Google Scholar 

  • Gambarini V, Pantos O, Kingsbury JM, Weaver I, Handley KM, Lear G (2021) Phylogenetic distribution of plastic-degrading microorganisms. mSystems 6:e01112–e01120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Liu R, Sun C (2022) A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J Hazard Mater 431:128617

    Article  CAS  PubMed  Google Scholar 

  • García-Gómez JC, Garrigós M, Garrigós J (2021) Plastic as a vector of dispersion for marine species with invasive potential. A Review Front Ecol Evol 9:629756

    Article  Google Scholar 

  • Garside M (2020) Global plastic production from 1950 to 2019 (in million metric tons). Statista, Hamburg, Germany.

  • Gautam R, Bassi AS, Yanful EK (2007) A review of biodegradation of synthetic plastic and foams. Appl Biochem Biotechnol 141(1):85–108

    Article  CAS  PubMed  Google Scholar 

  • Gaytán I, Sánchez-Reyes A, Burelo M et al (2020) Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and Its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Front Microbiol 10:2986

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  • Giyahchi M, Moghimi H (2023) Aerobic biodegradation of untreated polyester–polyether urethanes by newly isolated yeast strains Exophilia sp. NS-7 and Rhodotorula sp. NS-12. Sci Rep 13:5016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2000) Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. J Polym Environ 8:183–195

    Article  CAS  Google Scholar 

  • Guo Y, Chen S, Su L et al (2013) Cloning, expression, and characterization of polyamidase from Nocardia farcinica and its application to polyamide modification. Biotechnol Bioproc Eng 18:1067–1075

    Article  CAS  Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98(5):1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Haines J, Alexander M (1975) Microbial degradation of polyethylene glycols. Appl Microbiol 29:621–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmening DM (2005) Modern Blood Banking & Transfusion Practices. F. A. Davis Company.

  • Heumann S, Eberl A, Fischer-Colbrie G, Pobeheim H, Kaufmann F, Ribitsch D, Cavaco-Paulo A, Guebitz GM (2009) A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide. Biotechnol Bioeng 102(4):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K (2019) Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution. EMBO Rep 20(11):e49365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoya H, Miyazaki N, Sugisaki Y, Takanashi E, Tsurufuji M, Yamasaki M, Tamura G (1978) Bacterial degradation of synthetic polymers and oligomers with the special reference to the case of polyethylene glycol. Agric Biol Chem 42:1545–1552

    CAS  Google Scholar 

  • Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegrad 49:245–252

    Article  CAS  Google Scholar 

  • Huang Y-L, Li Q-B, Deng X, Lu Y-H, Liao X-K, Hong M-Y, Wang Y (2005) Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes. Proc Biochem 40(1):207–211

    Article  CAS  Google Scholar 

  • Huo XD, Gao Y, Lin Q et al (2017) Isolation and identification of poly(butylene adipate-co-terephthalate)-degrading bacteria. Xinjiang Agri Sci 54(11):132–137

    Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223):768–71

    Article  CAS  PubMed  Google Scholar 

  • Jâms IB, Windsor FM, Poudevigne-Durance T, Ormerod SJ, Durance I (2020) Estimating the size distribution of plastics ingested by animals. Nat Commun 11(1):1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(L-lactide)-degrading activity in various actinomycetes. Macromol Biosci 2:420–428

    Article  CAS  Google Scholar 

  • Jia H, Zhang M, Weng Y, Zhao Y, Li C, Kanwal A (2021) Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J Environ Sci (china) 103:50–58

    Article  CAS  PubMed  Google Scholar 

  • Jirka AM, Carter MJ (1975) Micro semiautomated analysis of surface and waste waters for chemical oxygen demand. Anal Chem 47(8):1397–1402

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731

    Article  CAS  PubMed  Google Scholar 

  • Kanmani P, Kumaresan K, Aravind J, Karthikeyan S, Balan R (2016) Enzymatic degradation of polyhydroxyalkanoate using lipase from Bacillus subtilis. Int J Environ Sci Technol 13:1541–1552

    Article  CAS  Google Scholar 

  • Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic degradation of the bioplastic polymer poly(lactic acid): a review. Polym Degrad Stab 137:122–130

    Article  CAS  Google Scholar 

  • Kawai F, Takeuchi M (1996) Taxonomical position of newly isolated polyethylene glycol-utilizing bacteria. J Ferment Biotechnol 82:492–494

    Article  CAS  Google Scholar 

  • Kawai F (2005) Biodegradation of polyethers (polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and others). In Biopolymers Online, A. Steinbüchel (Ed.)

  • Khairul Anuar NFS, Huyop F, Ur-Rehman G, Abdullah F, Normi YM, Sabullah MK, Abdul Wahab R (2022) An overview into polyethylene terephthalate (PET) hydrolases and efforts in tailoring enzymes for improved plastic degradation. Int J Mol Sci 23(20):12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khamkong T, Penkhrue W, Lumyong S (2022) Optimization of production of polyhydroxyalkanoates (PHAs) from newly isolated Ensifer sp. strain HD34 by response surface methodology. Processes 10:1632

    Article  CAS  Google Scholar 

  • Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Rhee YH (2003) Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 61(4):300–308

    Article  CAS  PubMed  Google Scholar 

  • Knott BC, Erickson E, Allen MD et al (2020) Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci U S A 117(41):25476–25485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlweyer U, Thiemer B, Schräder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol Lett 186(2):301–6

    Article  CAS  PubMed  Google Scholar 

  • Kreppel F, Kochanek S (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 16(1):16–29

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Chaudhary DR, Jha B (2019) Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ Sci Pollut Res Int 26(2):1507–1516

    Article  CAS  PubMed  Google Scholar 

  • Laganà P, Caruso G, Corsi I et al (2019) Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Environ Health 222(1):89–100

    Article  PubMed  Google Scholar 

  • Lau WWY, Shiran Y, Bailey RM et al (2020) Evaluating scenarios toward zero plastic pollution. Science 369(6510):1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Law KL, Narayan R (2022) Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat Rev Mater 7:104–116

    Article  CAS  Google Scholar 

  • Li FJ, Tan LC, Zhang SD, Zhu B (2016) Compatibility, steady and dynamic rheological behaviors of polylactide/poly(ethylene glycol) blends. J Appl Polym Sci 133:10

    Google Scholar 

  • Liu L, Li S, Garreau H, Vert M (2000) Selective enzymatic degradations of poly(L-lactide) and poly(epsilon-caprolactone) blend films. Biomacromol 1(3):350–359

    Article  CAS  Google Scholar 

  • Ljungberg N, Colombini D, Wesslen B (2005) Plasticization of poly(lactic acid) with oligomeric malonate esteramides: dynamic mechanical and thermal film properties. J Appl Polym Sci 96:992e1002

    Article  Google Scholar 

  • Loredo-Treviño A, Gutiérrez-Sánchez G, Rodríguez-Herrera R, Aguilar CN (2012) Microbial enzymes involved in polyurethane biodegradation: a review. J Polym Environ 20:258–265

    Article  Google Scholar 

  • MacLeod M, Arp HPH, Tekman MB, Jahnke A (2021) The global threat from plastic pollution. Science 373(6550):61–65

    Article  CAS  PubMed  Google Scholar 

  • Mahajan N, Gupta P (2015) New insights into the microbial degradation of polyurethanes. RSC Adv 5:41839–41854

    Article  CAS  Google Scholar 

  • Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29(7–9):863–893

    Article  CAS  PubMed  Google Scholar 

  • Medlar AJ, Törönen P, Holm L (2018) AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 46(W1):W479–W485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709

    Article  PubMed  PubMed Central  Google Scholar 

  • Muroi F, Tachibana Y, Soulenthone P et al (2017) Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium, Bacillus pumilus. Polym Degrad Stabil 137:11–22

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129(1):39–42

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104–1. Appl Environ Microbiol 67(1):345–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda S, Patra BR, Patel R, Bakos J, Dalai AK (2022) Innovations in applications and prospects of bioplastics and biopolymers: a review. Environ Chem Lett 20(1):379–395

    Article  CAS  PubMed  Google Scholar 

  • Negoro S, Kato DI, Ohki T et al (2021) Structural and functional characterization of nylon hydrolases. Methods Enzymol 648:357–389

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Tokiwa Y (1993) Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233

    Article  CAS  Google Scholar 

  • Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T (1998) Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Ferment Bioeng 86:339–340

    Article  CAS  Google Scholar 

  • Obradors N, Aguilar J (1991) Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol 57:2383–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36(3):856–870

    Article  CAS  PubMed  Google Scholar 

  • Okan M, Aydin HM, Barsbay M (2019) Current approaches to waste polymer utilization and minimization: a review. J Chem Technol Biotechnol 94(1):8–21

    Article  CAS  Google Scholar 

  • Pahl S, Wyles KJ, Thompson R (2017) Channelling passion for the ocean towards plastic pollution. Nat Hum Behav 1(10):697–699

    Article  PubMed  Google Scholar 

  • Penkhrue W, Khanongnuch C, Masaki K, Pathom-Aree W, Punyodom W, Lumyong S (2015) Isolation and screening of biopolymer-degrading microorganisms from Northern Thailand. World J Microbiol Biotechnol 31(9):1431–1442

    Article  CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Pietrelli L, Ferro S, Reverberi AP, Vocciante M (2021) Removal of polyethylene glycols from wastewater: a comparison of different approaches. Chemosphere 273:129725

    Article  CAS  PubMed  Google Scholar 

  • Pietrosanto A, Scarfato P, Di Maio L, Incarnato L (2020) Development of eco-sustainable PBAT-based blown films and performance analysis for food packaging applications. Materials (basel) 13(23):5395

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of poly(lactic) acid. Int Biodeterior Biodegradation 117:215–223

    Article  CAS  Google Scholar 

  • Ratcliff WC, Kadam SV, Denison RF (2008) Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65(3):391–399

    Article  CAS  PubMed  Google Scholar 

  • Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38(20):e191

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribitsch D, Heumann S, Trotscha E et al (2011) Hydrolysis of polyethylene terephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 27(4):951–960

    Article  CAS  PubMed  Google Scholar 

  • Rong Z, Ding ZH, Wu YH, Xu XW (2024) Degradation of low-density polyethylene by the bacterium Rhodococcus sp. C-2 isolated from seawater. Sci Total Environ 907:167993

    Article  CAS  PubMed  Google Scholar 

  • Rudel RA, Dodson RE, Newton E, Zota AR, Brody JG (2008) Correlations between urinary phthalate metabolites and phthalates, estrogenic compounds 4-butyl phenol and o-phenyl phenol, and some pesticides in home indoor air and house dust. Epidemiology 19(6):S332

    Google Scholar 

  • Rüthi J, Bölsterli D, Pardi-Comensoli L, Brunner I, Frey B (2020) The “Plastisphere” of biodegradable plastics is characterized by specific microbial taxa of alpine and Arctic soils. Front Environ Sci 8:562263

    Article  Google Scholar 

  • Salam LB (2018) Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil. Bull Natl Res Cent 42:10

    Article  Google Scholar 

  • Salam LB (2023) Diverse hydrocarbon degradation genes, heavy metal resistome, and microbiome of a fluorene-enriched animal-charcoal polluted soil. Folia Microbiol. https://doi.org/10.1007/s12223-023-01077-5

    Article  Google Scholar 

  • Salam LB, Ishaq A (2019) Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 9:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Salam LB, Obayori OS, Ilori MO, Amund OO (2023) Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World J Microbiol Biotechnol 39(9):228

    Article  CAS  PubMed  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme–laccase–in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84(4):204–210

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C, Krauth T, Wagner S (2017) Export of plastic debris by rivers into the sea. Environ Sci Technol 51(21):12246–12253

    Article  CAS  PubMed  Google Scholar 

  • Seregin SS, Amalfitano A (2009) Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 9(12):1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Zhang Y, Zhu Y, Song B, Zeng G, Hu D, Wen X, Ren X (2019) Recent advances in toxicological research of nanoplastics in the environment: a review. Environ Pollut 252(Pt A):511–521

    Article  CAS  PubMed  Google Scholar 

  • Shilpa BN, Meena SS (2022) Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Front Environ Sci Eng 16:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith M, Love DC, Rochman CM, Neff RA (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki D, Li Z, Cui X, Zhang C, Katayama A (2014) Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. Nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 64(Pt 9):3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Kawai F, Shimada Y, Yokota A (1993) Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov., system. Appl Microbiol 16:227–238

    CAS  Google Scholar 

  • Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Phil Trans R Soc Lond B Biol Sci 364(1526):2079–2096

    Article  CAS  Google Scholar 

  • Tang Q, Wu M, Zhang Y, Li J, Liang J, Zhou H, Qu Y, Zhang X (2022) Performance and bacterial community profiles of sequencing batch reactors during long-term exposure to polyethylene terephthalate and polyethylene microplastics. Bioresour Technol 347:126393

    Article  CAS  PubMed  Google Scholar 

  • Tay BY, Zhang SX, Myint MH, Ng FL, Chandrasekaran M, Tan LK (2007) Processing of polycaprolactone porous structure for scaffold development. J Mater Process Technol 182:117–121

    Article  CAS  Google Scholar 

  • The Pew Charitable Trusts (2020) Systemiq. Breaking the plastic wave: a comprehensive assessment of pathways towards stopping ocean plastic pollution. The Pew Charitable Trusts, Philadelphia

    Google Scholar 

  • Thiel M, Luna-Jorquera G, Álvarez-Varas R et al (2018) Impacts of marine plastic pollution from continental coasts to subtropical gyres-fish, seabirds, and other vertebrates in the SE pacific. Front Mar Sci 5:238

    Article  Google Scholar 

  • Tiwari N, Santhiya D, Sharma JG (2022) Biodegradation of micro-sized nylon 6,6 using Brevibacillus brevis a soil isolate for cleaner ecosystem. J Clean Prod 378:134457

    Article  CAS  Google Scholar 

  • Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I (2023) Enzymes’ power for plastics degradation. Chem Rev 123(9):5612–5701

    Article  CAS  PubMed  Google Scholar 

  • Urbanek AK, Mirończuk AM, García-Martín A, Saborido A, de la Mata I (1868) Arroyo M (2020) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochim Biophys Acta Proteins Proteom 2:140315

    Google Scholar 

  • Vethaak AD, Legler J (2021) Microplastics and human health. Science 371:672–674

    Article  CAS  PubMed  Google Scholar 

  • Wallace PW, Haernvall K, Ribitsch D et al (2017) PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. Appl Microbiol Biotechnol 101(6):2291–2303

    Article  CAS  PubMed  Google Scholar 

  • Wang MH, He Y, Sen B (2019) Research and management of plastic pollution in coastal environments of China. Environ Pollut 248(1):898–905

    Article  CAS  PubMed  Google Scholar 

  • Wang GX, Huang D, Ji JH, Völker C, Wurm FR (2021) Seawater-degradable polymers-fighting the marine plastic pollution. Adv Sci (weinh) 8(1):2001121

    Article  CAS  Google Scholar 

  • Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W (2014) Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 4:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123(3):582–593

  • Willis A, Parks M, Burford MA (2015) Draft genome assembly of filamentous brackish cyanobacterium Limnoraphis robusta strain CS-951. Genome Announc 3(5):e00846-e915

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Li Z, Gao J et al (2023) Characterization of a PBAT degradation carboxylesterase from Thermobacillus composti KWC4. Catalysts 13:340

    Article  CAS  Google Scholar 

  • Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 90:211–268

    Article  CAS  Google Scholar 

  • Yang Y, Min J, Xue T et al (2023) Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases. Nat Commun 14(1):1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao C, Xia W, Dou M, Du Y, Wu J (2022) Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. J Hazard Mater 440:129709

    Article  CAS  PubMed  Google Scholar 

  • Yoon GM, Jeon JH, Kim NM (2012) Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. J Bioremed Biodegrad 3(4):1000144

    Google Scholar 

  • Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278):1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xia M, Zhao J, Cao Z, Zou W, Zhou Q (2022) Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish. Environ Int 158:106922

    Article  CAS  PubMed  Google Scholar 

  • Zhou LY, Zhao GY, Jiang W (2016) Mechanical properties of biodegradable polylactide/poly(ether-block-amide)/thermoplastic starch blends: effect of the crosslinking of starch. J Appl Polym Sci 133:7

    Article  Google Scholar 

  • Zhou W, Bergsma S, Colpa DI, Euverink GW, Krooneman J (2023) Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. J Environ Manage 341:118033

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.B.S. designed, executed, analyzed, and wrote the manuscript.

Corresponding author

Correspondence to Lateef B. Salam.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, L.B. Metagenomic investigations into the microbial consortia, degradation pathways, and enzyme systems involved in the biodegradation of plastics in a tropical lentic pond sediment. World J Microbiol Biotechnol 40, 172 (2024). https://doi.org/10.1007/s11274-024-03972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-024-03972-6

Keywords

Navigation