Skip to main content
Log in

Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The impacts of hexavalent chromium (Cr) contamination on the microbiome, soil physicochemistry, and heavy metal resistome of a tropical agricultural soil were evaluated for 6 weeks in field-moist microcosms consisting of a Cr-inundated agricultural soil (SL9) and an untreated control (SL7). The physicochemistry of the two microcosms revealed a diminution in the total organic matter content and a significant dip in macronutrients phosphorus, potassium, and nitrogen concentration in the SL9 microcosm. Heavy metals analysis revealed the detection of seven heavy metals (Zn, Cu, Fe, Cd, Se, Pb, Cr) in the agricultural soil (SL7), whose concentrations drastically reduced in the SL9 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the preponderance of the phyla, classes, genera, and species of Actinobacteria (33.11%), Actinobacteria_class (38.20%), Candidatus Saccharimonas (11.67%), and Candidatus Saccharimonas aalborgensis (19.70%) in SL7, and Proteobacteria (47.52%), Betaproteobacteria (22.88%), Staphylococcus (16.18%), Staphylococcus aureus (9.76%) in SL9, respectively. Functional annotation of the two metagenomes for heavy metal resistance genes revealed diverse heavy metal resistomes involved in the uptake, transport, efflux, and detoxification of various heavy metals. It also revealed the exclusive detection in SL9 metagenome of resistance genes for chromium (chrB, chrF, chrR, nfsA, yieF), cadmium (czcB/czrB, czcD), and iron (fbpB, yqjH, rcnA, fetB, bfrA, fecE) not annotated in SL7 metagenome. The findings from this study revealed that Cr contamination induces significant shifts in the soil microbiome and heavy metal resistome, alters the soil physicochemistry, and facilitates the loss of prominent members of the microbiome not adapted to Cr stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R 2nd, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6(8):851–860

    CAS  PubMed  Google Scholar 

  • Ahmad S, Mfarrej MFB, El-Esawi MA et al (2022) Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicol Environ Saf 230:113142

    CAS  PubMed  Google Scholar 

  • Alherby HF, Ali S (2022) Combined role of Fe nanoparticles (fe NPs) and Staphylococcus aureus L. in the alleviation of chromium stress in rice plants. Life 12:338

    Google Scholar 

  • Alves LR, del Reis AR, Gratão PL (2016) Heavy metals in agricultural soils: from plants to our daily life. Científica 44:346–361

    Google Scholar 

  • Aminur R, Björn O, Jana J, Neelu NN, Sibdas G et al (2017) Genome sequencing revealed chromium and other heavy metal resistance genes in E. cloacae B2-Dha. J Microb Biochem Technol 9:191–199

    CAS  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2008) Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J Proteome Res 7:209–216

    CAS  PubMed  Google Scholar 

  • Andrew RWJ, Jackson JM (1996) Environmental science: the natural environment and human impact. Longman Publishers, Singapore

    Google Scholar 

  • ATSDR (2008) Public health statement: toxic substances and health. Agency for toxic substances and disease registry. Division of toxicology and environmental medicine. September bulletin, Atlanta

    Google Scholar 

  • Bahiru DB, Teju E, Kebede T, Demissie N (2019) Levels of some toxic heavy metals (cr, cd and pb) in selected vegetables and soils around eastern industry zone, Central Ethiopia. Afr J Agric Res 14(2):92–101

    CAS  Google Scholar 

  • Baldani JI, Pot B, Kirchhof G et al (1996) Emended description of Herbaspirillum, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov., and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Sys Bacteriol 46:802–810

    CAS  Google Scholar 

  • Baldiris R, Acosta-Tapia N, Montes A, Hernández J, Vivas-Reyes R (2018) Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules 23(2):406

    PubMed  PubMed Central  Google Scholar 

  • Beam CE, Saveson CJ, Lovett ST (2002) Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 184(24):6836–6844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE (2020) Bacterial iron detoxification at the molecular level. J Biol Chem 295(51):17602–17623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branco R, Morais PV (2013) Identification and characterization of the transcriptional regulator ChrB in the chromate resistance determinant of Ochrobactrum tritici 5bvl1. PLoS ONE 8(11):e77987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190(21):6996–7003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CT, Hug LA, Thomas BC et al (2015) Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:208–211

    CAS  PubMed  Google Scholar 

  • Buberg ML, Witsø IL, L’Abée-Lund TM, Wasteson Y (2020) Zinc and copper reduce conjugative transfer of resistance plasmids from extended-spectrum beta-lactamase-producing Escherichia coli. Microb Drug Resist 26(7):842–849

    CAS  PubMed  Google Scholar 

  • Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle size fractions of a paddy soil. FEMS Microbiol Ecol 87:164–181

    CAS  PubMed  Google Scholar 

  • Chishti KA, Khan FA, Hassan SSM (2011) Estimation of heavy metals in the seeds of blue and white capitalism’s of silybum marianum grown in various districts of Pakistan. J Basic Appl Sci 7(1):45–49

    CAS  Google Scholar 

  • Cidre I, Pulido RP, Burgos MJG, Gálvez A, Lucas R (2017) Copper and zinc tolerance in bacteria isolated from fresh produce. J Food Prot 80(6):969–975

    CAS  PubMed  Google Scholar 

  • Copeland A, Sikorski J, Lapidus A et al (2009) Complete genome sequence of Atopobium parvulum type strain (IPP 1246T). Stand Genomic Sci 1(2):166–173

    PubMed  PubMed Central  Google Scholar 

  • Day PR (1965) Particle fractionation and particle-size analysis. In Methods of Soil Analysis, part 1. (C.A. Black ed.) American Soc. of Agronomy Inc., Madison, pp. 545 – 56

  • Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160(1):1–9

    CAS  PubMed  Google Scholar 

  • Dessinioti C, Katsambas AD (2010) The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol 28:2–7

    PubMed  Google Scholar 

  • Ding Z, Wu J, You A, Huang B, Cao C (2017) Effects of heavy metals on soil microbial community structure and diversity in the Rice (Oryza Sativa L. Subsp. Japonica, food crops Institute of Jiangsu Academy of Agricultural Sciences) rhizosphere. Soil Sci Plant Nutr 63(1):75–83

    CAS  Google Scholar 

  • Djoko KY, Chong LX, Wedd AG, Xiao Z (2010) Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc 132(6):2005–2015

    CAS  PubMed  Google Scholar 

  • Elías A, Díaz-Vásquez W, Abarca-Lagunas MJ, Chasteen TG, Arenas F, Vásquez CC (2015) The ActP acetate transporter acts prior to the PitA phosphate carrier in tellurite uptake by Escherichia coli. Microbiol Res 177:15–21

    PubMed  Google Scholar 

  • Ertani A, Mietto A, Borin M et al (2017) Chromium in agricultural soils and crops: a review. Water Air Soil Pollut 228:190

    Google Scholar 

  • FAO/WHO (2011) Joint AO/WHO Food Standards Food CF/5INF/1. Fifth Session. The Hague. The Program Codex Committee on Contaminants in Food, Netherlands

    Google Scholar 

  • Feng G, Xie T, Wang X et al (2018) Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol 18(1):11

    PubMed  PubMed Central  Google Scholar 

  • Frawley ER, Fang FC (2014) The ins and outs of bacterial iron metabolism. Mol Microbiol 93:609–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giachino A, Waldron KJ (2020) Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol 114(3):377–390

    CAS  PubMed  Google Scholar 

  • Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183(6):2145–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halpern M, Shaked T, Pukall R, Schumann (2009) Leucobacter chiromoni sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59(pt 4):665–670

    CAS  PubMed  Google Scholar 

  • Hansda A, Kumar V, Anshumali (2017) Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 7:132

    PubMed  PubMed Central  Google Scholar 

  • Haque F, Jabeen I, Keya CA, Shuvo SR (2022) Whole-genome sequencing and comparative analysis of heavy metals tolerant Bacillus anthracis FHq strain isolated from tannery effluents in Bangladesh. AIMS Microbiol 8(2):227–239

    CAS  PubMed  Google Scholar 

  • Ibrahim UB, Kawo AH, Yusuf I et al (2021) Physicochemical and molecular characterization of heavy metal–tolerant bacteria isolated from soil of mining sites in Nigeria. J Genet Eng Biotechnol 19:152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irawati W, Paricia SY, Baskoro AH (2012) A study on mercury-resistant bacteria isolated from a gold mine in Pongkor village, Bogor, Indonesia. Hayati J Biosci 19(4):197–200

    Google Scholar 

  • Jaffe AL, Castelle CJ, Matheus Carnevali PB, Gribaldo S, Banfield JF (2020) The rise of diversity in metabolic platforms across the candidate Phyla radiation. BMC Biol 18:69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jean J, Sirot V, Hulin M et al (2018) Dietary exposure to cadmium and health risk assessment in children- results of the french infant total diet study. Food Chem Toxicol 115:358–364

    CAS  PubMed  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69

    CAS  PubMed  Google Scholar 

  • Juhnke S, Peitzsch N, Hübener N et al (2004) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 181:390

    CAS  Google Scholar 

  • Kabore´ OD, Godreuil S, Drancourt M (2020) Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front Cell Infect Microbiol 10:519301

    PubMed  PubMed Central  Google Scholar 

  • Kalsoom A, Batool R, Jamil N (2021) Highly Cr(vi)-tolerant Staphylococcus simulans assisting chromate evacuation from tannery effluent. Green Process Synth 10(1):295–308

    CAS  Google Scholar 

  • Keseler IM, Gama-Castro S, Mackie A et al (2021) The EcoCyc database in 2021. Front Microbiol 12:711077

    PubMed  PubMed Central  Google Scholar 

  • Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, Northern Pakistan. Food Chem Toxicol 58:449–458

    CAS  PubMed  Google Scholar 

  • Kim D, Song L, Breitwieser FP, Salzberg SL (2016) Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 26:1721–1729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51(Pt 1):157–168

    CAS  PubMed  Google Scholar 

  • Kohler C, Lourenço RF, Avelar GM et al (2012) Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress. BMC Microbiol 12:210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouadjo CG, Zeze A (2011) Chromium tolerance and reduction potential of Staphylococci species isolated from a fly ash dumping site in South Africa. Afr J Biotechnol 10(69):15587–15594

    CAS  Google Scholar 

  • Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Màrialigeti K (1999) Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49 Pt 1:167–173

    Google Scholar 

  • Kulichevskaya IS, Ivanova AA, Naumoff DG et al (2020) Frigoriglobus tundricola gen. nov., sp. nov., a psychrotolerant cellulolytic planctomycete of the family Gemmataceae from a littoral tundra wetland. Syst Appl Microbiol 43:126129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari D, Pan X, Achal V, Zhang D, Al-Misned FA, Mortuza MG (2015) Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci 74:3113–3121

    CAS  Google Scholar 

  • Lage OM, Bondoso J (2014) Planctomycetes and macroalgae, a striking association. Front Microbiol 5:267

    PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie-2. Nat Methods 9(4):357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P-E, Lo C-C, Anderson JJ et al (2017) Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res 45(1):67–80

    CAS  PubMed  Google Scholar 

  • Li X, Xu H, Gao B, Yang Z, Sun Y, Shi X, Wu J (2019) Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: effect of ion type and concentration. Environ Pollut 254(Pt A):112940

  • Li X, Islam MM, Chen L, Wang L, Zheng X (2020) Metagenomics-guided discovery of potential bacterial metallothionein genes from the soil microbiome that confer Cu and/or cd resistance. Appl Environ Microbiol 86(9):e02907–e02919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Gao H, Wu M, Ma C, Wu J, Ye X (2020) Distribution characteristics of bacterial communities and hydrocarbon degradation dynamics during the remediation of petroleum-contaminated soil by enhancing moisture content. Microb Ecol 80:202–211

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhou Q, Wang Y, Cheng S, Hao W (2021) Deriving soil quality criteria of chromium based on species sensitivity distribution methodology. Toxics 9:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo C-C, Chain PSG (2014) Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinform 15:366

    Google Scholar 

  • Luo C, Xie S, Sun W, Li X, Cupples AM (2009) Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl Environ Microbiol 75:4644–4647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Chen N, Feng C et al (2020) Coupling enhancement of chromium (VI) bioreduction in groundwater by phosphorus minerals. Chemosphere 240:124896

    CAS  PubMed  Google Scholar 

  • Malan M, Müller F, Cyster L, Raitt L, Aalbers J (2015) Heavy metals in the irrigation water, soils and vegetables in the Philippi horticultural area in the western Cape Province of South Africa. Environ Monit Assess 187(1):4085

    CAS  PubMed  Google Scholar 

  • Minari GD, Saran LM, Constancio MTL, Correia da Silva R, Rosalen DL, José de Melo W, Alves LMC (2020) Bioremediation potential of new cadmium, chromium, and nickel resistant bacteria isolated from tropical agricultural soil. Ecotoxicol Environ Saf 204:111038

    CAS  PubMed  Google Scholar 

  • Monsieurs P, Moors H, Van Houdt R et al (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24:1133–1151

    CAS  PubMed  Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24(3):401–410

    CAS  PubMed  Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 25:198–203

    CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CAS  PubMed  Google Scholar 

  • Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34(19):5623–5630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oulas A, Pavloud G, Polymanakou P et al (2015) Metagenomics tools and insights for analyzing next generation sequencing data derived from biodiversity studies. Boinform Bol insights 9:7588

    Google Scholar 

  • Oyetibo GO, Ilori MO, Adebusoye SA, Obayori OS, Amund OO (2010) Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in nigerian contaminated systems. Environ Monit Assess 168:305–314

    CAS  PubMed  Google Scholar 

  • Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2013) Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage. Environ Monit Assess 185:6809–6818

    CAS  PubMed  Google Scholar 

  • Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2015) Metal biouptake by actively growing cells of metal-tolerant bacterial strains. Environ Monit Assess 187(8):525

    PubMed  Google Scholar 

  • Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG (2014) BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 42(database issue):D737–D743

    CAS  PubMed  Google Scholar 

  • Pang B, Yu H, Zhang J, Ye F, Wu H, Shang C (2022) Identification of differentially expressed genes for Pseudomonas sp. Cr13 stimulated by hexavalent chromium. PLoS ONE 17(8):e0272528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Tyson GW, Hugenhiltz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson ES, Boucher SE, Lambert IB (2002) Regulation of the nfsA Gene in Escherichia coli by SoxS. J Bacteriol 184(1):51–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    CAS  PubMed  Google Scholar 

  • Pereira EJ, Damare S, Furtado B, Ramaiah N (2018) Response to chromate challenge by marine Staphylococcus sp. NIOMR8 evaluated by differential protein expression. 3 Biotech 8(12):500

    PubMed  PubMed Central  Google Scholar 

  • Philp JC, Whiteley AS, Ciric L, Bailey MJ (2005) Monitoring bioremediation. In: Atlas RM, Philp J (eds) Bioremediation: applied solution for a real-world environmental cleanup. ASM Press, Washington DC, pp237268

    Google Scholar 

  • Pontel LB, Scampoli NL, Porwollik S, Checa SK, McClelland M, Soncini FC (2014) Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. Microbiol (Reading) 160(Pt 8):1659–1669

    CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385

    CAS  PubMed  Google Scholar 

  • Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    CAS  PubMed  Google Scholar 

  • Rana MS, Hu CX, Shaaban M et al (2020) Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. J Environ Manag 268:110610

    CAS  Google Scholar 

  • Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR (2002) ActP controls copper homeostasis in Rhizobium leguminosarum bv. Viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43(4):981–991

    CAS  PubMed  Google Scholar 

  • Rezaei Bookani K, Marcus R, Cheikh E, Parish M, Salahuddin U (2018) Corynebacterium jeikeium endocarditis: a case report and comprehensive review of an underestimated infection. IDCases 11:26–30

    PubMed  Google Scholar 

  • Rivera M (2017) Bacterioferritin: structure, dynamics, and protein-protein interactions at play in iron storage and mobilization. Acc Chem Res 50(2):331–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi FZ, Kanwal W, Faisal M (2016) Chromate-reducing profile of bacterial strains isolated from industrial effluents. Pol J Environ Stud 25(5):2121–2128

    CAS  Google Scholar 

  • Roberts SA, Wildner GF, Grass G et al (2003) A labile regulatory copper ion lies near the T1 site in the multicopper oxidase cueO. J Biol Chem 278(34):31958–31963

    CAS  PubMed  Google Scholar 

  • Salam LB (2018) Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil. Bull Natl Res Cent 42:10

    Google Scholar 

  • Salam LB (2022) Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use. Folia Microbiol (Praha) 67(5):707–719

    CAS  PubMed  Google Scholar 

  • Salam LB, Ishaq A (2019) Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 9:46

    PubMed  PubMed Central  Google Scholar 

  • Salam LB, Obayori OS (2019) Structural and functional metagenomic analysis of a tropical agricultural soil. Span J Soil Sci 9:1–23

    Google Scholar 

  • Salam LB, Ilori MO, Amund OO et al (2014) Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical african soil. Environ Sci Pollut Res 21:9311–9324

    CAS  Google Scholar 

  • Salam LB, Obayori OS, Nwaokorie FO, Suleiman A, Mustapha R (2017) Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ Sci Pollut Res 24:7139–7159

    CAS  Google Scholar 

  • Salam LB, Obayori OS, Ilori MO, Amund OO (2020) Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. Bioresour Bioprocess 7:25

    Google Scholar 

  • Saleem MH, Afzal J, Rizwan M, Shah Z, Depar N, Usman K (2022) Chromium toxicity in plants: consequences on growth, chromosomal behavior, and mineral nutrient status. Turk J Agric For 46(3):10

    Google Scholar 

  • Santoyo G, Orozco-Mosqueda M, Valdez-Martínez G, Orozco-Mosqueda Mdel C (2015) Induction of the homologous recombination system by hexavalent chromium in Rhizobium etli. Microbiol Res 170:223–228

    CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  PubMed  Google Scholar 

  • Sharma A, Kapoor D, Wang J et al (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9(1):100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Singh SP, Parakh SK, Tong YW (2022a) Health hazards of hexavalent chromium (cr (VI)) and its microbial reduction. Bioengineered 13(3):4923–4938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Chaturvedi P, Chandra R, Kumar S (2022b) Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere 295:133823

    CAS  PubMed  Google Scholar 

  • Sodhi KK, Kumar M, Singh DK (2020) Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl Sci 2:1885

    CAS  Google Scholar 

  • Soto J, Charles TC, Lynch MDJ, Larama G, Herrera H, Arriagada C (2021) Genome sequence of Brevundimonas sp., an arsenic resistant soil bacterium. Diversity 13:344

    CAS  Google Scholar 

  • Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremesini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366:649–658

    CAS  PubMed  Google Scholar 

  • Srivastava V, Sarkar A, Singh S, Singh P, De Araujo ASF, Singh RP (2017) Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front Environ Sci 5:64

    Google Scholar 

  • Sturm G, Jacobs J, Spröer C, Schumann P, Gescher J (2011) Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 61(Pt 4):956–960

    CAS  PubMed  Google Scholar 

  • Sturm G, Brunner S, Suvorova E et al (2018) Chromate resistance mechanisms in Leucobacter chromiiresistens. Appl Environ Microbiol 84:e02208–e02218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Shao C, Jin Q et al (2022) Response of microbial community structure to chromium contamination in Panax ginseng-growing soil. Environ Sci Pollut Res 29:61122–61134

    CAS  Google Scholar 

  • Tariq M, Waseem M, Rasool MH, Zahoor MA, Hussain I (2019) Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites. PeerJ 7:e7726

    PubMed  PubMed Central  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    CAS  Google Scholar 

  • Trevors T, Cotter CM (1990) Copper toxicity and uptake in microorganisms. J Ind Microbiol 6(2):77–84

    CAS  Google Scholar 

  • Tsaneva IR, Müller B, West SC (1993) RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro. Proc Natl Acad Sci 90(4):1315–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuleski TR, Kimball J, do Amaral FP et al (2020) Herbaspirillum rubrisubalbicansas a phytopathogenic model to study the immune system of Sorghum bicolor. Mol Plant Microbe Interact 33(2):235–246

    CAS  PubMed  Google Scholar 

  • van Niftrik L, Devos DP (2017) Editorial: Planctomycetes-Verrucomicrobia-Chlamydiae bacterial superphylum: new model organisms for evolutionary cell biology. Front Microbiol 8:1458

    PubMed  PubMed Central  Google Scholar 

  • Velasquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716

    CAS  PubMed  Google Scholar 

  • Vest KE, Hashemi HF, Cobine PA (2013) The copper metallome in eukaryotic cells. Met Ions Life Sci 12:451–478

    PubMed  Google Scholar 

  • Viti C, Marchi E, Decorosi F, Giovannetti L (2014) Molecular mechanisms of cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38(4):633–659

    CAS  PubMed  Google Scholar 

  • Xu J, Catruvo JA Jr (2022) Reconsidering the czcD (NiCo) riboswitch as an iron riboswitch ACS. Bio Med Chem 2(4):376–385

    CAS  Google Scholar 

  • Xu Z, Li X, Tian J, Gan L, Tian Y (2021) Leucobacter chromiisoli sp. nov., isolated from chromium-containing chemical plant soil. Int J Syst Evol Microbiol 71(7)

  • Yao H, Jepkorir G, Lovell S, Nama PV, Weeratunga S, Battaile KP, Rivera M (2011) Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (bfr). Biochemistry 50(23):5236–5248

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2007) Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidzalba L.) metabolism. Arch Environ Contam Toxicol 52:503–511

    CAS  PubMed  Google Scholar 

  • Zampieri BDB, da Costa Andrade V, Chinellato RM et al (2020) Heavy metal concentrations in brazilian port areas and their relationships with microorganisms: can pollution in these areas change the microbial community? Environ Monit Assess 192:512

    CAS  PubMed  Google Scholar 

  • Zhao X, Huang J, Zhu X, Chai J, Ji X (2020) Ecological effects of heavy metal pollution on soil microbial community structure and diversity on both sides of a river around a mining area. Int J Environ Res Public Health 17:5680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Liang C, Chen M, Chen J, Li X (2019) Functional metagenomics to mine soil microbiome for novel cadmium resistance genetic determinants. Pedosphere 29:298–310

    CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.B.S. conceived the study, performed the experiments, and wrote the Methods and Results. O.S.O. coordinated the study and wrote the Introduction and Discussion. M.O.I. and O.O.A. contributed to the Discussion and overall scientific quality of the manuscript. All the authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Lateef Babatunde Salam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, L.B., Obayori, O.S., Ilori, M.O. et al. Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World J Microbiol Biotechnol 39, 228 (2023). https://doi.org/10.1007/s11274-023-03681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03681-6

Keywords

Navigation