Skip to main content
Log in

Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

β-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable β-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic β-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Yamabhai et al. (2016)

Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abomohra AF, Zheng XY, Wang QY et al (2021) Enhancement of biodiesel yield and characteristics through in-situ solvo-thermal co-transesterification of wet microalgae with spent coffee grounds. Bioresour Technol 323:124640

    Article  CAS  PubMed  Google Scholar 

  • Abou-Hachem M, Olsson F, Karlsson EN (2003) Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles 7(6):483–491

    Article  CAS  PubMed  Google Scholar 

  • Adiguzel A, Nadaroglu H, Adiguzel G (2015) Purification and characterization of -mannanase from Bacillus pumilus (M27) and its applications in some fruit juices. J Food Sci Tech Mys 52(8):5292–5298

    Article  CAS  Google Scholar 

  • Akram F, ul Haq I, Imran W et al (2018) Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renew Energ 122:225–238

    Article  CAS  Google Scholar 

  • Almutairi AW, Al-Hasawi ZM, Abomohra A (2021) Valorization of lipidic food waste for enhanced biodiesel recovery through two-step conversion: a novel microalgae-integrated approach. Bioresource Technol 342:9

    Article  Google Scholar 

  • Yopi A, Meryandini A (2015) Enzymatic hydrolysis of copra meal by mannanase from Streptomyces sp. BF3.1 for the production of mannooligosaccharides. HAYATI J Biosci 22(2):79–86

    Article  Google Scholar 

  • Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sust Energ Rev 51:699–717

    Article  CAS  Google Scholar 

  • Atalah J, Caceres-Moreno P, Espina G et al (2019) Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource Technol 280:478–488

    Article  CAS  Google Scholar 

  • Badejo OA, Olaniyi OO, Ayodeji AO et al (2021) Biochemical properties of partially purified surfactant-tolerant alkalophilic endo beta-1,4 xylanase and acidophilic beta-mannanase from bacteria resident in ruminants’ guts. Biocataly Agricul Biotechnol 34:101982

    Article  CAS  Google Scholar 

  • Basu S, Mukharjee D (2017) Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions. J Mol Model 23(7):206. https://doi.org/10.1007/s00894-017-3376-y

    Article  CAS  PubMed  Google Scholar 

  • Benech RO, Li XM, Patton D et al (2007) Recombinant expression, characterization, and pulp prebleaching property of a phanerochaete chrysosporium endo-beta-1,4-mannanase. Enzyme Microb Tech 41(6–7):740–747

    Article  CAS  Google Scholar 

  • Bhattacharya A, Wiemann M, Stalbrand H (2021) Beta-mannanase BoMan26B from Bacteroides ovatus produces mannan-oligosaccharides with prebiotic potential from galactomannan and softwood beta-mannans. LWT-Food Sci Technol 151:11

    Article  Google Scholar 

  • Blibech M, Farhat-Khemakhem A, Kriaa M et al (2020) Optimization of beta-mannanase production by Bacillus subtilis US191 using economical agricultural substrates. Biotechnol Prog 36(4):9

    Article  Google Scholar 

  • Boraston AB, McLean BW, Chen G et al (2002) Co-operative binding of triplicate carbohydrate-binding modules from a thermophilic xylanase. Mol Microbiol 43(1):187–194

    Article  CAS  PubMed  Google Scholar 

  • Bosshard HR, Marti DN, Jelesarov I (2004) Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit 17(1):1–16. https://doi.org/10.1002/jmr.657

    Article  CAS  PubMed  Google Scholar 

  • Chandra MRS, Lee YS, Park IH et al (2011) Isolation, purification and characterization of a thermostable beta-mannanase from Paenibacillus sp DZ3. J Korean Soc Appl Bi 54(3):325–331

    Article  CAS  Google Scholar 

  • Chauhan PS, Bharadwaj A, Puri N et al (2014) Optimization of medium composition for alkali-thermostable mannanase production by Bacillus nealsonii PN-11 in submerged fermentation. Int J Curr Microbiol Appl Sci 3:1033

    Google Scholar 

  • Cheng LF, Duan SW, Feng XY et al (2016) Purification and characterization of a thermostable beta-mannanase from Bacillus subtilis BE-91: Potential application in inflammatory diseases. Biomed Res Int 2016:7

    Article  Google Scholar 

  • Chhabra S, Parker KN, Lam D et al (2001) Beta-Mannanases from Thermotoga species. In: Pt Adams AMWW, Kelly RM (eds) Hyperthermophilic Enzymes. Elsevier Academic Press Inc, San Diego

    Google Scholar 

  • Chiyanzu I, Brienzo M, García-Aparicio MP, Görgens JF (2014) Application of Endo-β-1,4,d-mannanase and cellulase for the release of mannooligosaccharides from steam-pretreated spent coffee ground. Appl Biochem Biotechnol 172(7):3538–3557

    Article  CAS  PubMed  Google Scholar 

  • Cilmeli S, Doruk T, Konen-Adiguzel S et al (2022) A thermostable and acidophilic mannanase from Bacillus mojavensis: its sustainable production using spent coffee grounds, characterization, and application in grape juice processing. Biomass Convers Biorefinery 14:3811

    Article  Google Scholar 

  • Dar MA, Pawar KD, Jadhav JP et al (2015) Isolation of cellulolytic bacteria from the gastro-intestinal tract of Achatina fulica (Gastropoda: Pulmonata) and their evaluation for cellulose biodegradation. Int Biodeter Biodegr 98:73–80

    Article  CAS  Google Scholar 

  • Dar MA, Pawar KD, Pandi RS (2018) Prospecting the gut fluid of giant African land snail, Achatina fulica for cellulose degrading bacteria. Int Biodeter Biodegr 126:103–111

    Article  CAS  Google Scholar 

  • David A, Chauhan PS, Kumar A et al (2018) Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. Int J Biol Macromol 108:1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Dawood A, Ma KS (2020) Applications of Microbial beta-mannanases. Front Bioeng Biotechnol 8:17

    Article  Google Scholar 

  • Dhawan S (2021) Purification of a thermostable β-mannanase from Paenibacillus Thiaminolyticus - characterization and its potential use as a detergent additive. J Pure Appl Microbio 15:368–381

    Article  CAS  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216. https://doi.org/10.1080/07388550701775919

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Singh R, Kaur R et al (2016) A beta-mannanase from Paenibacillus sp.: optimization of production and its possible prebiotic potential. Biotechnol Appl Biochem 63(5):669–678

    Article  CAS  PubMed  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551

    Article  CAS  PubMed  Google Scholar 

  • Donald JE, Kulp DW, DeGrado WF (2011) Salt bridges: geometrically specific, designable interactions. Proteins 79(3):898–915. https://doi.org/10.1002/prot.22927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos CR, Paiva JH, Meza AN et al (2012) Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-beta-D-mannanase. J Struct Biol 177(2):469–476

    Article  PubMed  Google Scholar 

  • Duffner F, Bertoldo C, Andersen JT et al (2000) A new thermoactive pullulanase from Desulfurococcus mucosus: Cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. J Bacteriol 182(22):6331–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn EK, Shoue DA, Huang XM et al (2007) Spectroscopic and biochemical analysis of regions of the cell wall of the unicellular ‘mannan weed’, Acetabularia acetabulum. Plant Cell Physiol 48(1):122–133

    Article  CAS  PubMed  Google Scholar 

  • Ebaid R, Wang HC, Sha C et al (2019) Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: a critical review. J Clean Prod 238:17

    Article  Google Scholar 

  • El Harrar T, Frieg B, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H (2021) Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Comput Struct Biotechnol J 19:4248–4264. https://doi.org/10.1016/j.csbj.2021.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira de Freitas R, Schapira MA (2017) Systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm 8(10):1970–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folch B, Rooman M, Dehouck Y (2008) Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials. J Chem Inf Model 48(1):119–127

    Article  CAS  PubMed  Google Scholar 

  • Fusco FA, Ronca R, Fiorentino G et al (2018) Biochemical characterization of a thermostable endomannanase/endoglucanase from Dictyoglomus turgidum. Extremophiles 22(1):131–140

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Luis AS, Bras JLA et al (2013) Thermostable recombinant beta-(1 -> 4)-mannanase from C-thermocellum: biochemical characterization and manno-oligosaccharides production. J Agric Food Chem 61(50):12333–12344

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith M, Tawfik DS (2012) Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struc Biol 22(4):406–412

    Article  CAS  Google Scholar 

  • Goyal D, Kumar K, Centeno MSJ et al (2019) Molecular cloning, expression and biochemical characterization of a family 5 glycoside hydrolase first endo-mannanase (RfGH5_7) from Ruminococcus flavefaciens FD-1 v3. Mol Biotechnol 61(11):826–835

    Article  CAS  PubMed  Google Scholar 

  • Haiqiang L, Xinxi G, Qiaomin Y et al (2020) Heterologous expression of codon optimized thermophilic β-mannanase gene (manBK) and its application in degradation of Konjac mannan[J]. Food Sci 41(18):113–119. https://doi.org/10.7506/spkx1002-6630-20190805-058

    Article  Google Scholar 

  • Han HW, Ling ZM, Khan A et al (2019) Improvements of thermophilic enzymes: from genetic modifications to applications. Bioresource Technol 279:350–361

    Article  CAS  Google Scholar 

  • Hilge M, Gloor SM, Winterhalter KH et al (1996) Crystallization and preliminary crystallographic analysis of two beta-mannanase isoforms from Thermomonospora fusca KW3. Acta Crystallogr D 52(6):1224–1225

    Article  CAS  PubMed  Google Scholar 

  • Hilge M, Gloor SM, Rypniewski W et al (1998) High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca-substrate specificity in glycosyl hydrolase family 5. Structure 6(11):1433–1444

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZQ, Wei Y, Li DY et al (2006) High-level production, purification and characterization of a thermostable beta-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym 66(1):88–96

    Article  CAS  Google Scholar 

  • Jomrit J, Suhardi S, Summpunn P (2023) Effects of signal peptide and chaperone co-expression on heterologous protein production in Escherichia coli. Molecules 28:5594. https://doi.org/10.3390/molecules28145594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaira GS, Kapoor M (2019) How substrate subsites in GH26 endo-mannanase contribute towards mannan binding. Biochem Biophys Res Commun 510(3):358–363

    Article  CAS  PubMed  Google Scholar 

  • Kaira GS, Kapoor M (2021) Molecular advancements on over-expression, stability and catalytic aspects of endo-β-mannanases. Crit Rev Biotechnol 41(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Kaira GS, Panwar D, Kapoor M (2016) Recombinant endo-mannanase (ManB-1601) production using agro-industrial residues: development of economical medium and application in oil extraction from copra. Bioresour Technol 209:220–227

    Article  CAS  PubMed  Google Scholar 

  • Kaira GS, Usharani D, Kapoor M (2019) Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601). Int J Biol Macromol 133:1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Kaira GS, Usharani D, Kapoor M (2020) Zn2+ stapling of N and C-terminal maintains stability and substrate affinity in GH26 endo-mannanase. Enzym Microb Technol 135:109497

    Article  CAS  Google Scholar 

  • Karp SG, Osipov DO, Semenova MV et al (2020) Effect of novel Penicillium verruculosum enzyme preparations on the saccharification of acid- and alkali-pretreated agro-industrial residues. Agronomy 10(9):1348

    Article  CAS  Google Scholar 

  • Katsimpouras C, Dimarogona M, Petropoulos P et al (2016) A thermostable GH26 endo-beta-mannanase from Myceliophthora Thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol 100(19):8385–8397

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Ham SJ, Lee HJ et al (2011) Cloning and characterization of a modular GH5 beta-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp strain HY-13. Bioresource Technol 102(19):9185–9192

    Article  CAS  Google Scholar 

  • Kumagai Y, Usuki H, Yamamoto Y et al (2011) Characterization of calcium ion sensitive region for beta-mannanase from Streptomyces Thermolilacinus. BBA-Proteins Proteom 1814(9):1127–1133

    Article  CAS  Google Scholar 

  • Kumagai Y, Uraji M, Wan K et al (2016) Molecular insights into the mechanism of thermal stability of actinomycete mannanase. FEBS Lett 590(17):2862–2869

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dangi AK, Shukla P et al (2019) Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresource Technol 278:372–382

    Article  CAS  Google Scholar 

  • Lee YS, Zhou Y, Park IH et al (2010) Isolation and purification of thermostable beta-mannanase from Paenibacillus illinoisensis ZY-08. J Korean Soc Appl Bi 53(1):1–7

    Article  CAS  Google Scholar 

  • Li JM, Nie SP (2016) The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloid 53:46–61

    Article  CAS  Google Scholar 

  • Li YN, Yang PL, Meng K et al (2008) Gene cloning, expression, and characterization of a novel beta-mannanase from Bacillus circulans CGMCC 1416. J Microbiol Biotechnol 18(1):160–166

    CAS  PubMed  Google Scholar 

  • Li RK, Chen P, Ng TB et al (2015) Highly efficient expression and characterization of a beta-mannanase from Bacillus subtilis in Pichia pastoris. Biotechnol Appl Biochem 62(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Li YX, Yi P, Yan QJ et al (2017) Directed evolution of a beta-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions. Biotechnol Biofuels 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CY, Liu F, Ye J et al (2018) A low-temperature active endo-β-1,4-mannanase from Bacillus subtilis TD7 and its gene expression. Escherichia coli Applied Environmental Biotechnology 3:17–25

    Google Scholar 

  • Li YX, Wang NN, Yan QJ, Hua XH, Liu Y, Jiang ZQ (2022) A novel neutral thermophilic β-mannanase from Malbranchea cinnamomea for controllable production of partially hydrolyzed konjac powder. Appl Microbiol Biotechnol 106(5):1919–1932

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Qi W, He ZM (2008) Optimization of beta-mannanase production from Bacillus licheniformis TJ-101 using response surface methodology. Chem Biochem Eng Q 22(3):355–362

    CAS  Google Scholar 

  • Liu HX, Gong JS, Li H et al (2015) Biochemical characterization and cloning of an endo-1,4-beta-mannanase from Bacillus subtilis YH12 with unusually broad substrate profile. Process Biochem 50(5):712–721

    Article  CAS  Google Scholar 

  • Liu WN, Tu T, Gu Y et al (2019) Insight into the thermophilic mechanism of a glycoside hydrolase family 5 beta-mannanase. J Agric Food Chem 67(1):473–483

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Cui TB, Song Y (2020) Expression, homology modeling and enzymatic characterization of a new beta-mannanase belonging to glycoside hydrolase family 1 from Enterobacter aerogenes B19. Microb Cell Fact 19(1):19

    Article  CAS  Google Scholar 

  • Liu ZM, Liang QP, Wang P et al (2021a) Improving the kinetic stability of a hyperthermostable beta-mannanase by a rationally combined strategy. Int J Biol Macromol 167:405–414

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Cao L, Fu X, Liang Q, Sun H, Mou H (2021b) A multi-functional genetic manipulation system and its use in high-level expression of a β-mannanase mutant with high specific activity in Pichia pastoris. Microb Biotechnol 14(4):1525–1538. https://doi.org/10.1111/1751-7915.13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Ramulu HG, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T (2023) Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 13(12):402

    Article  PubMed  Google Scholar 

  • Luo ZC, Miao J, Li GY et al (2017) A recombinant highly thermostable beta-mannanase (retman26) from thermophilic Bacillus subtilis (TBS2) expressed in Pichia pastoris and its pH and temperature stability. Appl Biochem Biotechnol 182(4):1259–1275

    Article  CAS  PubMed  Google Scholar 

  • Lüthi E, Jasmat NB, Grayling RA et al (1991) Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a beta-mannanase from the extremely thermophilic bacterium Caldocellum Saccharolyticum. Appl Environ Microbiol 57(3):694–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Luzics S, Tóth Á, Barna T, Szabó E, Nagy I, Horváth B, Nagy I, Varecza Z, Bata-Vidács I, Kukolya J (2023) Cloning, expression, and biochemical characterisation of a novel endomannanase from Thermobifida alba. Acta Aliment 52(3):502–519. https://doi.org/10.1556/066.2023.00186

    Article  CAS  Google Scholar 

  • Ma YH, Xue YF, Dou YT et al (2004) Characterization and gene cloning of a novel beta-mannanase from alkaliphilic Bacillus sp N16-5. Extremophiles 8(6):447–454

    Article  CAS  PubMed  Google Scholar 

  • McCutchen CM, Duffaud GD, Leduc P et al (1996) Characterization of extremely thermostable enzymatic breakers (alpha-1,6-galactosidase and beta-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum. Biotechnol Bioeng 52(2):332–339

    Article  CAS  PubMed  Google Scholar 

  • Menart V, Jevsevar S, Vilar M et al (2003) Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong P-R,P-L promoters from phage lambda. Biotechnol Bioeng 83(2):181–190

    Article  CAS  PubMed  Google Scholar 

  • Morrill J, Kulcinskaja E, Sulewska AM et al (2015) The GH5 1,4-beta-mannanase from Bifidobacterium animalis subsp lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC Boichem 16:12

    Google Scholar 

  • Mou HJ, Zhou F, Jiang XL et al (2011) Production, purification and properties of beta-mannanase from soil bacterium Bacillus circulans m-21. J Food Biochem 35(5):1451–1460

    Article  CAS  Google Scholar 

  • Nadaroglu H, Adiguzel A, Adiguzel G (2015) Purification and characterisation of beta-mannanase from Lactobacillus plantarum (M24) and its applications in some fruit juices. Int J Food Sci Technol 50(5):1158–1165

    Article  CAS  Google Scholar 

  • Nannemann DP, Birmingham WR, Scism RA et al (2011) Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis. Future Med Chem 3(7):803–819

    Article  Google Scholar 

  • Niu CT, Zhu LJ, Xu X et al (2017) Rational design of thermostability in bacterial 1,3 – 1,4-beta-glucanases through spatial compartmentalization of mutational hotspots. Appl Microbiol Biotechnol 101(3):1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Onokwai AO, Ajisegiri ESA, Okokpujie IP, Ibikunle RA, Oki M, Dirisu JO (2022) Characterization of lignocellulose biomass based on proximate, ultimate, structural composition, and thermal analysis. Mater Today 65:2156–2162

    CAS  Google Scholar 

  • Paes G, Berrin JG, Beaugrand J (2012) GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 30(3):564–592

    Article  CAS  PubMed  Google Scholar 

  • Pan XA, Zhou JG, Tian A et al (2011) High level expression of a truncated beta-mannanase from alkaliphilic Bacillus sp N16-5 in Kluyveromyces Cicerisporus. Biotechnol Lett 33(3):565–570

    Article  CAS  PubMed  Google Scholar 

  • Pangsri P, Piwpankaew Y, Ingkakul A et al (2015) Characterization of mannanase from Bacillus circulans NT 6.7 and its application in mannooligosaccharides preparation as prebiotic. SpringerPlus 4:11

    Article  Google Scholar 

  • Panwar D, Kaira GS, Kapoor M (2017) Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-beta-1,4-mannanase: improved activity, stability and reusability. Int J Biol Macromol 105:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Pereira JH, Chen ZW, McAndrew RP et al (2010) Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol 172(3):372–379

    Article  CAS  PubMed  Google Scholar 

  • Politz O, Krah M, Thomsen KK et al (2000) A highly thermostable endo-(1,4)-beta-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol 53(6):715–721

    Article  CAS  PubMed  Google Scholar 

  • Poonsrisawat A, Wanlapatit S, Paemanee A et al (2014) Viscosity reduction of cassava for very high gravity ethanol fermentation using cell wall degrading enzymes from Aspergillus Aculeatus. Process Biochem 49(11):1950–1957

    Article  CAS  Google Scholar 

  • Pradeep GC, Cho SS, Choi YH et al (2016) An extremely alkaline mannanase from Streptomyces Sp CS428 hydrolyzes galactomannan producing series of mannooligosaccharides. World J Microb Biot 32(5):9

    Article  Google Scholar 

  • Prasad RK, Chatterjee S, Mazumder PB et al (2019) Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere 231:588–606

    Article  CAS  PubMed  Google Scholar 

  • Pucci F, Rooman M (2017) Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struc Biol 42:117–128

    Article  CAS  Google Scholar 

  • Purohit A, Yadav SK (2020) Characterization of a thermotolerant and acidophilic mannanase producing Microbacterium sp. CIAB417 for mannooligosachharide production from agro-residues and dye decolorization. Int J Biol Macromol 163:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Ratnakomala S, Kahar P, Kashiwagi N et al (2022) Manno-oligosaccharide production from biomass hydrolysis by using endo-1,4-beta-mannanase (ManNj6-379) from Nonomuraea jabiensis ID06-379. Processes 10(2):18

    Article  Google Scholar 

  • Rocha SN, Abrahao-Neto J, Cerdan ME et al (2011) Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 89(2):375–385

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gacio MDC, Iglesias-Fernandez R, Carbonero P et al (2012) Softening-up mannan-rich cell walls. J Exp Bot 63(11):3975–3988

    Article  Google Scholar 

  • Ryu MH, Hosseindoust A, Kim JS et al (2017) Beta-mannanase derived from Bacillus subtilis wl-7 improves the performance of commercial laying hens fed low or high mannan-based diets. J Poult Sci 54(3):212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadaqat B, Sha C, Rupani PF et al (2021) Man/Cel5B, a bifunctional enzyme having the highest mannanase activity in the hyperthermic environment. Front Bioeng Biotechnol 9:11

    Article  Google Scholar 

  • Sadeghi M, Naderi-Manesh H, Zarrabi M et al (2006) Effective factors in thermostability of thermophilic proteins. Biophys Chem 119(3):256–270

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Kimoto S, Shinzawa Y, Minezawa M, Suzuki K, Jindou S, Kato M, Shimizu M (2018) Characterization of pH-tolerant and thermostable GH 134 β-1,4-mannanase SsGH134 possessing carbohydrate binding module 10 from Streptomyces sp. NRRL B-24484. J Biosci Bioeng 125(3):287–294

    Article  CAS  PubMed  Google Scholar 

  • Sha C, Sadaqat B, Wang HC et al (2020) Efficient xylan-to-sugar biotransformation using an engineered xylanase in hyperthermic environment. Int J Biol Macromol 157:17–23

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Pei J, Li X (2005) The method for over-expression of the xylanase B from Thermotoga maritima in Escherichia coli. China Patent, ZL 03131524.0

  • Shao W, Wu H, Pei J (2006) Novel expression vector system regulated by Sigma32 and methods for using it to produce recombinant protein

  • Sharma K, Dhillon A, Goyal A (2018) Insights into structure and reaction mechanism of beta-mannanases. Curr Protein Pept Sc 19(1):34–47

    CAS  Google Scholar 

  • Shukor H, Abdeshahian P, Al-Shorgani NKN et al (2016) Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol. Bioresource Technol 218:257–264

    Article  CAS  Google Scholar 

  • Singh S, Singh G, Arya SK (2018) Mannans: an overview of properties and application in food products. Int J Biol Macromol 119:79–95

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh G, Khatri M et al (2019) Thermo and alkali stable beta-mannanase: characterization and application for removal of food (mannans based) stain. Int J Biol Macromol 134:536–546

    Article  CAS  PubMed  Google Scholar 

  • Souza CC, Guimarães JM, Pereira SDS, Mariúba LAM (2021) The multifunctionality of expression systems in Bacillus subtilis: emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 246(23):2443–2453. https://doi.org/10.1177/15353702211030189

    Article  CAS  PubMed  Google Scholar 

  • Spassov DS, Atanasova M, Doytchinova I (2023) A role of salt bridges in mediating drug potency: a lesson from the nmyristoyltransferase inhibitors. Front Mol Biosci 9:1066029. https://doi.org/10.3389/fmolb.2022.1066029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava PK, Kapoor M (2017) Production, properties, and applications of endo-beta-mannanases. Biotechnol Adv 35(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Rao A, Kapoor M (2016) Metal-dependent thermal stability of recombinant endo-mannanase (ManB-1601) belonging to family GH 26 from Bacillus sp CFR1601. Enzyme Microb Tech 84:41–49

    Article  Google Scholar 

  • Su XY, Mackie RI, Cann IKO (2012) Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii. Appl Environ Microbiol 78(7):2230–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunna A (2010) Modular organisation and functional analysis of dissected modular beta-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 86(1):189–200

    Article  CAS  PubMed  Google Scholar 

  • Talbot G, Sygusch J (1990) Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol 56(11):3505–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Tao X, Zheng P, Chen P, Yu X, Li N, Gao T, Wu D (2023) Thermostability modification of b-mannanase from Aspergillus niger via flexibility modification engineering. Front Microbiol 14:1119232. https://doi.org/10.3389/fmicb.2023.1119232

    Article  PubMed  PubMed Central  Google Scholar 

  • Thombare N, Jha U, Mishra S, Siddiqui MZ (2016) Guar gum as a promising starting material for diverse applications: A review. Int J Biol Macromol 88:361–372

    Article  CAS  PubMed  Google Scholar 

  • Titok MA, Chapuis J, Selezneva YV et al (2003) Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 49(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Valdez-Cruz NA, Caspeta L, Perez NO et al (2010) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact 9:16

    Article  Google Scholar 

  • Van Zyl WH, Rose SH, Trollope K, Görgens JF (2010) Fungal β-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45(8):1203–1213. https://doi.org/10.1016/j.procbio.2010.05.011

    Article  CAS  Google Scholar 

  • Vijayalaxmi S, Prakash P, Jayalakshmi SK et al (2013) Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2: Purification and characterization. Appl Biochem Biotechnol 171(2):382–395

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shao ZZ, Hong YZ et al (2010) A novel beta-mannanase from Pantoea agglomerans A021: gene cloning, expression, purification and characterization. World J Microb Biot 26(10):1777–1784

    Article  CAS  Google Scholar 

  • Wang J, Zhang QY, Huang ZQ et al (2013) Directed evolution of a family 26 glycoside hydrolase: Endo-beta-1, 4-mannanase from Pantoea agglomerans A021. J Biotechnol 167(3):350–356

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Ben R, Zhang L et al (2017) High-level expression of two thermophilic beta-mannanases in Yarrowia lipolytica. Protein Expr Purif 133:1–7

    Article  Google Scholar 

  • Wang XC, You SP, Zhang JX et al (2018) Rational design of a thermophilic beta-mannanase from Bacillus subtilis TJ-102 to improve its thermostability. Enzyme Microb Tech 118:50–56

    Article  CAS  Google Scholar 

  • Wen F, Nair NU, Zhao HM (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotech 20(4):412–419

    Article  CAS  PubMed  Google Scholar 

  • Wu HW, Pei JJ, Jiang Y et al (2010) pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes. Biotechnol Lett 32(6):795–801

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Lu HQ, Xia MJ et al (2016) A novel glycoside hydrolase family 113 endo-beta-1,4-mannanase from Alicyclobacillus sp strain a4 and insight into the substrate recognition and catalytic mechanism of this family. Appl Environ Microbiol 82(9):2718–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamabhai M, Sak-Ubol S, Srila W et al (2016) Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 36(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Yan XX, An XM, Gui LL et al (2008) From structure to function: Insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman. J Mol Biol 379(3):535–544

    Article  CAS  PubMed  Google Scholar 

  • Yan SL, Duan BY, Liu CC et al (2023) Heterologous expression, purification and characterization of an alkalic thermophilic beta-mannanase CcMan5C from Coprinopsis cinerea. J Fungi 9(3):14

    Article  Google Scholar 

  • Yang M, Cai J, Wang CG et al (2017) Characterization of endo-beta-mannanase from Enterobacter ludwigii MY271 and application in pulp industry. Bioproc Biosyst Eng 40(1):35–43

    Article  CAS  Google Scholar 

  • Yoo HY, Pradeep GC, Kim SW et al (2015) A novel low-molecular weight alkaline mannanase from Streptomyces tendae. Biotechnol Bioproc E 20(3):453–461

    Article  CAS  Google Scholar 

  • Yopi Rahmani N, Amanah S et al (2020) The production of β-mannanase from Kitasatospora sp. strain using submerged fermentation: Purification, characterization and its potential in mannooligosaccharides production. Biocataly Agricul Biotechnol 24:101532

    Article  Google Scholar 

  • Zhang J, He ZM, Hu K (2000) Purification and characterization of beta-mannanase from Bacillus licheniformis for industrial use. Biotechnol Lett 22(17):1375–1378

    Article  CAS  Google Scholar 

  • Zhang W, Liu ZM, Zhou SJ et al (2019) Cloning and expression of a beta-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis. Enzyme Microb Tech 124:70–78

    Article  CAS  Google Scholar 

  • Zhao YJ, Zhang YH, Cao Y et al (2011) Structural analysis of alkaline beta-mannanase from alkaliphilic Bacillus sp N16-5: Implications for adaptation to alkaline conditions. PLoS ONE 6(1):12

    Article  Google Scholar 

  • Zheng HC, Yu ZX, Fu XP et al (2016) High level extracellular production of a truncated alkaline beta-mannanase from alkaliphilic Bacillus sp N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation. J Ind Microbiol Biotechnol 43(7):977–987

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J (2023) Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Front Microbiol 14:1191553. https://doi.org/10.3389/fmicb.2023.1191553

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou HY, Yang WJ, Tian Y et al (2016) N-terminal truncation contributed to increasing thermal stability of mannanase Man1312 without activity loss. J Sci Food Agric 96(4):1390–1395

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yong J, Gao H, Li T, Xiao H, Wu Y (2017) Mannanase Man23 mutant library construction based on a novel cell-free protein expression system. J Sci Food Agric 97(7):2199–2204. https://doi.org/10.1002/jsfa.8029

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Xue YF, Ma YH (2018) Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline beta-mannanase from an alkaliphilic Bacillus clausii strain S10. Microb Cell Fact 17:19

    Article  Google Scholar 

  • Zhu MZ, Zhang L, Yang F et al (2020) A recombinant beta-mannanase from Thermoanaerobacterium aotearoense SCUT27: Biochemical characterization and its thermostability improvement. J Agric Food Chem 68(3):818–825

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Chen Y, Isupov MN, Littlechild JA, Sun L, Liu X et al (2021) Structural insights into a novel esterase from the east pacific rise and its improved thermostability by a semirational design. J Agric Food Chem 69:1079–1090. https://doi.org/10.1021/acs.jafc.0c06338

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

BS acknowledges the Jiangsu university and Lund University for postdoctoral fellowships. This work was supported by National Natural Science Foundation of China (Grant No. 31770089, 52050410328, 31972851, 31670064 and 32250410285), the National Key Research and Development Program of China and Foreign Expert Program, Ministry of Science and Technology (MoST) of China under grant number WGXZ2023020L.

Author information

Authors and Affiliations

Authors

Contributions

B.S., and M.A.D. wrote the main manuscript text. C.S. prepared the figures and tables. A.E.A., W.S. and Y.C.Y. modified the manuscript. All the authors reviewed the manuscript.

Corresponding authors

Correspondence to Weilan Shao or Yang-Chun Yong.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaqat, B., Dar, M.A., Sha, C. et al. Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. World J Microbiol Biotechnol 40, 130 (2024). https://doi.org/10.1007/s11274-024-03912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-024-03912-4

Keywords

Navigation