Skip to main content
Log in

Salinity-controlled distribution of prokaryotic communities in the Arctic sea-ice melt ponds

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The thawing of snow and sea ice produces distinctive melt ponds on the surface of the Arctic sea ice, which covers a significant portion of the surface sea ice during summer. Melt-pond salinity impacts heat transfer to the ice below and the melting rate. It is widely known that melt ponds play a significant role in heat fluxes, ice-albedo feedback, and sea-ice energy balance. However, not much attention has been given to the fact that melt ponds also serve as a unique microbial ecosystem where microbial production begins as soon as they are formed. Here, we investigated the role of melt pond salinity in controlling the diversity and distribution of prokaryotic communities using culture-dependent and –independent approaches. The 16 S rRNA gene amplicon based next generation sequencing analysis retrieved a total of 14 bacterial phyla, consisting of 146 genera, in addition to two archaeal phyla. Further, the culture-dependent approaches of the study allowed for the isolation and identification of twenty-four bacterial genera in pure culture. Flavobacterium, Candidatus_Aquiluna, SAR11 clade, Polaribacter, Glaciecola, and Nonlabens were the dominant genera observed in the amplicon analysis. Whereas Actimicrobium, Rhodoglobus, Flavobacterium, and Pseudomonas were dominated in the culturable fraction. Our results also demonstrated that salinity, chlorophyll a, and dissolved organic carbon were the significant environmental variables controlling the prokaryotic community distribution in melt ponds. A significant community shift was observed in melt ponds when the salinity changed with the progression of melting and deepening of ponds. Different communities were found to be dominant in melt ponds with different salinity ranges. It was also observed that melt pond prokaryotic communities significantly differed from the surface ocean microbial community. Our observations suggest that complex prokaryotic communities develop in melt ponds immediately after its formation using dissolved organic carbon generated through primary production in the oligotrophic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and/or analysed in the current study are available in the NCBI repository, BioProject number PRJNA770954. Submission information can be found at: http://www.ncbi.nlm.nih.gov/sra.

Code Availability

Codes used in the current study are available from the corresponding author upon reasonable request.

References

  • Abell GC, Bowman JP (2005) Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51(2):265–277

    Article  PubMed  CAS  Google Scholar 

  • Akulava V, Miamin U, Akhremchuk K, Valentovich L, Dolgikh A, Shapaval V (2022) Isolation, physiological characterization, and antibiotic susceptibility testing of fast-growing Bacteria from the Sea-affected Temporary Meltwater ponds in the Thala Hills Oasis (Enderby Land, East Antarctica). Biology 11(8):1143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ambrose WG, Quillfeldt Cv, Clough LM, Tilney PV, Tucker T (2005) The sub-ice algal community in the Chukchi sea: large-and small-scale patterns of abundance based on images from a remotely operated vehicle. Polar Biol 28:784–795

    Article  Google Scholar 

  • Archer SD, McDonald IR, Herbold CW, Lee CK, Cary CS (2015) Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Front Microbiol 6:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer SD, McDonald IR, Herbold CW, Lee CK, Niederberger TS, Cary C (2016) Temporal, regional and geochemical drivers of microbial community variation in the melt ponds of the Ross Sea region, Antarctica. Polar Biol 39(2):267–282

    Article  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J, Smith JA, Struhl K (1992) Short protocols in molecular biology. New York 275:28764–28773

    Google Scholar 

  • Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI (2020) Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J 14(6):1369–1383

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman JP, McCAMMON SA, BROWN JL, McMEEKIN TA (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Evol Microbiol 48(4):1213–1222

    Google Scholar 

  • Brinkmeyer R, Glöckner F-O, Helmke E, Amann R (2004) Predominance of β-proteobacteria in summer melt pools on Arctic pack ice. Limnol Oceanogr 49(4):1013–1021

    Article  Google Scholar 

  • Cardozo-Mino MG, Fadeev E, Salman-Carvalho V, Boetius A (2022) Spatial distribution of Arctic Bacterioplankton abundance is linked to distinct Water masses and Summertime Dynamics (Fram Phytoplankton Strait, 79◦ N) Bloom. Front Microbiol 12:1–14

    Google Scholar 

  • Chen M, Jung J, Lee YK, Hur J (2018) Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. Sci Total Environ 639:624–632

    Article  PubMed  CAS  Google Scholar 

  • Choi T-H, Lee HK, Lee K, Cho J-C (2007) Ulvibacter antarcticus sp. nov., isolated from Antarctic coastal seawater. Int J Syst Evol Microbiol 57(12):2922–2925

    Article  PubMed  CAS  Google Scholar 

  • Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15(3):799–821

    Article  PubMed  CAS  Google Scholar 

  • Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25(4):1176–1193

    Article  Google Scholar 

  • Diamond R, Sime LC, Schroeder D, Guarino M-V (2021) The contribution of melt ponds to enhanced Arctic sea-ice melt during the last interglacial. The Cryosphere 15(11):5099–5114

    Article  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MG (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eicken H, Grenfell T, Perovich D, Richter-Menge J, Frey K (2004) Hydraulic controls of summer Arctic pack ice albedo. J Geophys Res Oceans 109:C8

    Article  Google Scholar 

  • Eronen-Rasimus E, Piiparinen J, Karkman A, Lyra C, Gerland S, Kaartokallio H (2016) Bacterial communities in Arctic first‐year drift ice during the winter/spring transition. Environ Microbiol Rep 8(4):527–535

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Méndez M, Katlein C, Rabe B, Nicolaus M, Peeken I, Bakker K, Flores H, Boetius A (2015) Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12(11):3525–3549

    Article  Google Scholar 

  • Fernández-Méndez M, Turk-Kubo KA, Buttigieg PL, Rapp JZ, Krumpen T, Zehr JP, Boetius A (2016) Diazotroph diversity in the sea ice, melt ponds, and surface waters of the Eurasian Basin of the Central Arctic Ocean. Front Microbiol 7:1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Fetterer F, Untersteiner N (1998) Observations of melt ponds on Arctic Sea Ice. J Geophys Res Oceans 103(C11):24821–24835

    Article  Google Scholar 

  • Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13(3):133–146

    Article  PubMed  CAS  Google Scholar 

  • Galgani L, Piontek J, Engel A (2016) Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts. Sci Rep 6(1):29465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Zdanowski MK (2016) Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 20:403–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Geilfus N-X, Galley R, Crabeck O, Papakyriakou T, Landy J, Tison J-L, Rysgaard S (2015) Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic. Biogeosciences 12(6):2047–2061

    Article  Google Scholar 

  • Giebel H-A, Wolterink M, Brinkhoff T, Simon M (2019) Complementary energy acquisition via aerobic anoxygenic photosynthesis and Carbon Monoxide oxidation by Planktomarina temperata of the Roseobacter group. FEMS Microbiol Ecol 95(5):fiz050

    Article  PubMed  CAS  Google Scholar 

  • Gifford SM, Zhao L, Stemple B, DeLong K, Medeiros PM, Seim H, Marchetti A (2020) Microbial niche diversification in the Galápagos Archipelago and its response to El Niño. Front Microbiol 11:575194

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannoni SJ, Bibbs L, Cho J-C, Stapels MD, Desiderio R, Vergin KL, Rappé MS, Laney S, Wilhelm LJ, Tripp HJ (2005) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438(7064):82–85

    Article  PubMed  CAS  Google Scholar 

  • Gordon LI, Jennings Jr JC, Ross AA, Krest JM (1993) A suggested protocol for continuous flow automated analysis of seawater nutrients (phosphate, nitrate, nitrite and silicic acid) in the WOCE Hydrographic Program and the Joint Global Ocean fluxes Study. WOCE Hydrographic Program Office Methods Manual WHPO 68/91:1–52

    Google Scholar 

  • Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. Nov. Int J Syst Evol Microbiol 48(1):223–235

    Google Scholar 

  • Gradinger R (2003) Sea ice microorganisms. Encyclopedia of environmental microbiology

  • Hahn MW (2009) Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 59(0 1):112

    Article  PubMed  CAS  Google Scholar 

  • Hahnke RL, Bennke CM, Fuchs BM, Mann AJ, Rhiel E, Teeling H, Amann R, Harder J (2015) Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the N orth S ea. Environ Microbiol 17(10):3515–3526

    Article  PubMed  Google Scholar 

  • Han D, Kang I, Ha HK, Kim HC, Kim O-S, Lee BY, Cho J-C, Hur H-G, Lee YK (2014) Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting. PLoS ONE 9(1):e86887

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatam I, Charchuk R, Lange B, Beckers J, Haas C, Lanoil B (2014) Distinct bacterial assemblages reside at different depths in Arctic Multiyear Sea Ice. FEMS Microbiol Ecol 90(1):115–125

    Article  PubMed  CAS  Google Scholar 

  • Hatam I, Lange B, Beckers J, Haas C, Lanoil B (2016) Bacterial communities from Arctic Seasonal Sea ice are more compositionally variable than those from multi-year sea ice. ISME J 10(10):2543–2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform 16(1):1–7

    Article  Google Scholar 

  • Inoue J, Kikuchi T, Perovich DK (2008) Effect of heat transmission through melt ponds and ice on melting during summer in the Arctic Ocean. J Geophys Res Oceans 113:C5

    Article  Google Scholar 

  • Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria–an essential prerequisite for biodiscovery. Microb Biotechnol 3(5):564–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung SW, Park JS, Kown OY, Kang J-H, Shim WJ, Kim Y-O (2010) Effects of crude oil on marine microbial communities in short term outdoor microcosms. J Microbiol 48:594–600

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Hong S-B, Chen M, Hur J, Jiao L, Lee Y, Park K, Hahm D, Choi J-O, Yang EJ (2020) Characteristics of methanesulfonic acid, non-sea-salt sulfate and organic carbon aerosols over the Amundsen Sea, Antarctica. Atmos Chem Phys 20(9):5405–5424

    Article  CAS  Google Scholar 

  • Jung J, Lee Y, Cho KH, Yang EJ, Kang SH (2022) Spatial distributions of riverine and marine dissolved organic carbon in the western Arctic Ocean: results from the 2018 Korean expedition. J Geophys Res Oceans 127(7):e2021JC017718

    Article  CAS  Google Scholar 

  • Kang I, Lee K, Yang S-J, Choi A, Kang D, Lee YK, Cho J-C (2012) Genome sequence of Candidatus Aquiluna sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord. Am Soc Microbiol

  • Kenzaka T, Yamaguchi N, Tani K, Nasu M (1998) rRNA-targeted fluorescent in situ hybridization analysis of bacterial community structure in river water. Microbiol 144(8):2085–2093

    Article  CAS  Google Scholar 

  • Kim J, Kim K, Cho J, Kang YQ, Yoon H-J, Lee Y-W (2018) Satellite-based prediction of Arctic sea ice concentration using a deep neural network with multi-model ensemble. Remote Sens 11(1):19

    Article  Google Scholar 

  • Kolmakova OV, Gladyshev MI, Rozanov AS, Peltek SE, Trusova MY (2014) Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing. FEMS Microbiol Ecol 89(2):442–450

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwok R (2018) Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ Res Lett 13(10):105005

    Article  Google Scholar 

  • Lambo AJ, Patel TR (2006) Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr Microbiol 53:48–52

    Article  PubMed  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics

  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SH, McRoy CP, Joo HM, Gradinger R, Cui X, Yun MS, Chung KH, Kang S-H, Kang C-K, Choy EJ (2011) Holes in progressively thinning Arctic Sea ice lead to new ice algae habitat. Oceanography 24(3):302–308

    Article  Google Scholar 

  • Lee SH, Stockwell DA, Joo HM, Son YB, Kang CK, Whitledge TE (2012) Phytoplankton production from melting ponds on Arctic Sea Ice. J Geophys Res Oceans 117:C4

    Article  Google Scholar 

  • Lee J, Kang S-H, Yang EJ, Macdonald AM, Joo HM, Park J, Kim K, Lee GS, Kim J-H, Yoon J-E (2019) Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in western Arctic surface waters (from the Bering Strait to the Chukchi Borderland). Sci Rep 9(1):16822

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S-B, Chen X-L, He H-L, Zhang X-Y, Xie B-B, Yu Y, Chen B, Zhou B-C, Zhang Y-Z (2013) Structure and ecological roles of a novel exopolysaccharide from the Arctic Sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl Environ Microbiol 79(1):224–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Song M, Horton RM, Hu Y (2015) Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environ Res Lett 10(5):054017

    Article  Google Scholar 

  • Manz W, Wendt-Potthoff K, Neu T, Szewzyk U, Lawrence J (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37(4):225–237

    Article  PubMed  CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 17(1):10–12

    Article  Google Scholar 

  • Maslanik J, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:24

    Article  Google Scholar 

  • Mundy C, Gosselin M, Ehn JK, Belzile C, Poulin M, Alou E, Roy S, Hop H, Lessard S, Papakyriakou TN (2011) Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol 34:1869–1886

    Article  Google Scholar 

  • Netzer R, Henry IA, Ribicic D, Wibberg D, Brönner U, Brakstad OG (2018) Petroleum hydrocarbon and microbial community structure successions in marine oil-related aggregates associated with diatoms relevant for Arctic conditions. Mar Pollut Bull 135:759–768

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus M, Katlein C, Maslanik J, Hendricks S (2012) Changes in Arctic Sea ice result in increasing light transmittance and absorption. Geophys Res Lett 39:24

    Article  Google Scholar 

  • Papale M, Giannarelli S, Francesconi S, Di Marco G, Mikkonen A, Conte A, Rizzo C, De Domenico E, Michaud L, Giudice AL (2017) Enrichment, isolation and biodegradation potential of psychrotolerant polychlorinated-biphenyl degrading bacteria from the Kongsfjorden (Svalbard Islands, high Arctic Norway). Mar Pollut Bull 114(2):849–859

    Article  PubMed  CAS  Google Scholar 

  • Peeb A, Dang NP, Truu M, Nõlvak H, Petrich C, Truu J (2022) Assessment of hydrocarbon degradation potential in microbial communities in Arctic Sea Ice. Microorganisms 10(2):328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Annual Rev Mar Sci 1:417–441

    Article  Google Scholar 

  • Piontek J, Galgani L, Nöthig EM, Peeken I, Engel A (2021) Organic matter composition and heterotrophic bacterial activity at declining summer sea ice in the central Arctic Ocean. Limnol Oceanogr 66:S343–S362

    Article  CAS  Google Scholar 

  • Pitt A, Schmidt J, Koll U, Hahn MW (2021) Aquiluna Borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes. Int J Syst Evol Microbiol 71(5):004825

    Article  CAS  Google Scholar 

  • Qin QL, Wang ZB, Cha QQ, Liu SS, Ren XB, Fu HH, Sun ML, Zhao DL, McMinn A, Chen Y (2022) Biogeography of culturable marine bacteria from both poles reveals that ‘everything is not everywhere’at the genomic level. Environ Microbiol 24(1):98–109

    Article  PubMed  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapp J (2014) Bacterial diversity in sea ice, melt ponds, water column, ice algal aggregates and deep-sea sediments of the Central Arctic Ocean. AWI, Bremen, Germany, p 99

    Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Rösel A, Kaleschke L (2013) Detection of melt ponds on Arctic Sea Ice with optical satellite data. Springer

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serreze M, Walsh J, Chapin F, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel W, Morison J, Zhang T, Barry R (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Sizova M, Panikov N (2007) Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogen-oxidizing bacterium from alaskan soil. Int J Syst Evol Microbiol 57(3):616–619

    Article  PubMed  CAS  Google Scholar 

  • Sørensen HL, Thamdrup B, Jeppesen E, Rysgaard S, Glud RN (2017) Nutrient availability limits biological production in Arctic Sea ice melt ponds. Polar Biol 40:1593–1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ (2011) Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS ONE 6(5):e19725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9(8):e105592

    Article  PubMed  PubMed Central  Google Scholar 

  • Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336(6081):608–611

    Article  PubMed  CAS  Google Scholar 

  • Tripp HJ, Kitner JB, Schwalbach MS, Dacey JW, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452(7188):741–744

    Article  PubMed  CAS  Google Scholar 

  • Underwood GJ, Michel C, Meisterhans G, Niemi A, Belzile C, Witt M, Dumbrell AJ, Koch BP (2019) Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat Clim Change 9(2):170–176

    Article  Google Scholar 

  • Vipindas PV, Jabir T, Venkatachalam S, Yang EJ, Anand Jain, Krishnan KP (2023) Vertical segregation and phylogenetic characterization of archaea and archaeal ammonia monooxygenase gene in the water column of the western Arctic Ocea. Extremophiles 27:241–216

    Article  Google Scholar 

  • Vipindas PV, Venkatachalam S, Jabir T, Yang EJ, Cho K-H, Jung J, Lee Y, Krishnan KP (2022) Water mass controlled vertical stratification of bacterial and archaeal communities in the western arctic ocean during summer sea-ice melting. Microb Ecol 1–14

  • Von Scheibner M, Sommer U, Jürgens K (2017) Tight coupling of Glaciecola spp. and diatoms during cold-water phytoplankton spring blooms. Front Microbiol 8:27

    Google Scholar 

  • Weisse T, Müller H, Pinto-Coelho RM, Schweizer A, Springmann D, Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol Oceanogr 35(4):781–794

    Article  Google Scholar 

  • West NJ, Lepère C, Manes C-LO, Catala P, Scanlan DJ, Lebaron P (2016) Distinct spatial patterns of SAR11, SAR86, and Actinobacteria diversity along a transect in the ultra-oligotrophic South Pacific Ocean. Front Microbiol 7:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, Harder J, Becher D, Schweder T, Glöckner FO (2015) Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J 9(6):1410–1422

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Kong H, Yang E-J, Li X, Jiao N, Warren A, Wang Y, Lee Y, Jung J, Kang S-H (2020) Contrasting community composition of active microbial eukaryotes in melt ponds and sea water of the Arctic Ocean revealed by high throughput sequencing. Front Microbiol 11:1170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yackel J, Barber D, Hanesiak J (2000) Melt ponds on sea ice in the Canadian Archipelago: 1. Variability in morphological and radiative properties. J Geophys Res Oceans 105(C9):22049–22060

    Article  Google Scholar 

  • Yang A, Yen C (2012) PCR optimization of BOX-A1R PCR for microbial source tracking of Escherichia coli in waterways. J Exp Microbiol Immunol 16:85–89

  • Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Y, Yu Y, Li H, He J, Lee SH, Sun K (2013) Phylogenetic diversity of planktonic bacteria in the Chukchi Borderland region in summer. Acta Oceanol Sin 32:66–74

    Article  CAS  Google Scholar 

  • Zhang T, Zhuang Y, Jin H, Li K, Ji Z, Li Y, Bai Y (2019) Comparison of Phytoplankton communities between Melt ponds and Open Water in the Central Arctic Ocean. J Ocean Univ China 18(3):573–579

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to the Director, NCPOR, Ministry of earth sciences, for providing the necessary facilities for carrying out this research. This research was a part of the project titled ‘Korea-Arctic Ocean Warming and Response of Ecosystem (K-AWARE, KOPRI, 1525011760)’, funded by the Ministry of Oceans and Fisheries, Korea. The authors also thank Asian Forum for Polar Sciences (AFOPS) for facilitating the Arctic expedition in 2019. The authors thank the captain and crew of the IBRV ARAON who were most helpful in all shipboard operations. This is NCPOR contribution number J-50/2023-24.

Funding

This work was supported by the Ministry of earth sciences, Govt. of India and the Ministry of Oceans and Fisheries, Republic of Korea. Grant numbers [K-AWARE, KOPRI, 1525011760]. Authors Puthiya Veettil Vipindas, Siddarthan Venkatachalam, Thajudeen Jabir, Anand Jain, and Kottekkatu Padinchati Krishnan have received research support from NCPOR, India. Authors Jinyoung Jung and Eun Jin Yang have received research support from KOPRI, Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Puthiya Veettil Vipindas, Thajudeen Jabir, Siddarthan Venkatachalam, Jinyoung Jung and Eun Jin Yang, The first draft of the manuscript was written by Puthiya Veettil Vipindas and edited by Anand Jain and Kottekkatu Padinchati Krishnan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Puthiya Veettil Vipindas.

Ethics declarations

Ethics approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

This manuscript does not contain any studies with human participants.

Consent to publish

This manuscript does not contain any studies with human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vipindas, P., Venkatachalam, S., Jabir, T. et al. Salinity-controlled distribution of prokaryotic communities in the Arctic sea-ice melt ponds. World J Microbiol Biotechnol 40, 25 (2024). https://doi.org/10.1007/s11274-023-03850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03850-7

Keywords

Navigation