Skip to main content

Advertisement

Log in

Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biohydrogen is considered as one of the most promising energy alternatives considering the climate and energy crisis. The dark fermentative hydrogen production from xylose at extreme thermophilic condition (70 °C) using mixed culture was conducted in this study. The effects of initial pH values (ranged from 5.0 to 10.0) and substrate concentrations (ranged from 2.5 to 15.0 g/L) on the hydrogen production, substrate degradation and metabolite distributions were investigated using batch-mode operations. Results showed that initial substrate pH values in the neutral region (6.0–7.0) were beneficial for hydrogen production. The fermentation at initial pH 7.0 and 7.5 g/L xylose reached an optimal hydrogen yield of 1.29 mol-H2/mol-xyloseconsumed. Ethanol, butyrate, and propionate were the major liquid metabolites. The xylose biodegradation efficiency of the mixed culture decreased sharply at high initial culture pH values. The increase of xylose concentration resulted in the accumulation of propionate and an obvious decrease in the final pH value, as well as a low hydrogen yield. Polymerase chain reaction–denaturing gradient gel electrophoresis analysis indicated that hydrogen producing bacteria were enriched by repeated culture under extreme thermophilic conditions. Also, the mixed culture was dominated with bacterial species related to Clostridium and Thermoanaerobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R (2004) Production of bioenergy and biochemical from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala H, Skiadas I, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  Google Scholar 

  • Azman NF, Abdeshahian P, Kadier A, Al-Shorgani NKN, Salih NKM, Lananan I, Hamid AA, Kalil MS (2016) Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int J Hydrog Energy 41:145–156

    Article  CAS  Google Scholar 

  • Beckers L, Masset J, Hamilton C, Delvigne F, Toye D, Crine M, Thonart P, Hiligsmann S (2015) Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009. Biochem Eng J 98:18–28

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  • Hung CH, Chang YT, Chang YJ (2011) Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—a review. Bioresour Technol 102:8437–8444

    Article  CAS  Google Scholar 

  • Jariyaboon R, O-Thong S, Kongjan P (2015) Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. Bioresour Technol 198:198–206

    Article  CAS  Google Scholar 

  • Jiang YS, Malaviya A, Cho C, Lee J, Lee SY (2012) Butanol production from renewable biomass by Clostridia. Bioresour Technol 123:653–663

    Article  Google Scholar 

  • Jiang HY, Gadow SI, Tanaka Y, Cheng J, Li YY (2015) Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor. Biomass Bioenergy 75:57–64

    Article  CAS  Google Scholar 

  • Khamtib S, Reungsang A (2014) Co-digestion of oil palm trunk hydrolysate with slaughterhouse wastewater for thermophilic biohydrogen production by Thermoanaerobacterium thermosaccharolyticm KKU19. Int J Hydrog Energy 39:6872–6880

    Article  CAS  Google Scholar 

  • Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 °C) by mixed culture fermentation. Water Res 43:1414–1424

    Article  CAS  Google Scholar 

  • Kongjan P, Sompong O, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105:899–908

    CAS  Google Scholar 

  • Kudahettige-Nilsson RL, Helmerius J, Nilsson RT, Sojblom M, Hodge DB, Rova U (2015) Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor. Bioresour Technol 176:71–79

    Article  CAS  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269–278

    Article  CAS  Google Scholar 

  • Lin CY, Hung CH, Chen CH, Chung WT, Cheng LH (2006) Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochem 41:1383–1390

    Article  CAS  Google Scholar 

  • Lin CY, Wu CC, Hung CH (2008a) Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. Int J Hydrog Energy 33:43–50

    Article  CAS  Google Scholar 

  • Lin CY, Wu CC, Wu JH, Chang FY (2008b) Effect of cultivation temperature on fermentative hydrogen production from xylose by a mixed culture. Biomass Bioenergy 32:1109–1115

    Article  CAS  Google Scholar 

  • Liu HY, Wang GC (2012) Hydrogen production of a salt tolerant strain Bacillus sp. B2 from marine intertidal sludge. World J Microbiol Biotechnol 28:31–37

    Article  CAS  Google Scholar 

  • Liu DW, Zeng RJ, Angelidaki I (2008) Enrichment and adaptation of extreme-thermophilic (70 °C) hydrogen producing bacteria to organic household solid waste by repeated batch cultivation. Int J Hydrog Energy 33:6492–6497

    Article  CAS  Google Scholar 

  • Makinen AE, Nissila ME, Puhakka JA (2012) Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int J Hydrog Energy 37:12234–12240

    Article  CAS  Google Scholar 

  • Ngo TA, Nguyen TH, Bui HTV (2012) Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renew Energy 37:174–179

    Article  CAS  Google Scholar 

  • Ortigueira J, Alves L, Gouveia L, Moura P (2015) Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 153:128–234

    Article  CAS  Google Scholar 

  • Pinilla L, Torres R, Ortiz C (2011) Bioethanol production in batch mode by a native strain of Zymomonas mobilis. World J Microbiol Biotechnol 27:2521–2529

    Article  CAS  Google Scholar 

  • Playne MJ (2006) Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. J Sci Food Agric 36:638–644

    Article  Google Scholar 

  • Puhulwella RG, Beckers L, Delvigne F, Grigorescu AS, Thonart P, Hiligsmann S (2014) Mesophilic biohydrogen production by Clostridium butyricum CWBI1009 in trickling biofilter reactor. Int J Hydrog Energy 39:16902–16913

    Article  CAS  Google Scholar 

  • Qiu CS, Wen JP, Jia XQ (2011) Extreme-thermophilic biohydrogen production from lignocellulosic bioethanol distillery wastewater with community analysis of hydrogen-producing microflora. Int J Hydrog Energy 36:8243–8251

    Article  CAS  Google Scholar 

  • Qiu CS, Zheng YZ, Zheng JF, Liu Y, Xie CY, Sun LP (2016) Mesophilic and thermophilic biohydrogen production from xylose at various initial pH and substrate concentrations with microflora community analysis. Energy Fuels 30:1013–1019

    CAS  Google Scholar 

  • Rajagopalan G, He JZ, Yang KL (2014) Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium. Bioresour Technol 154:38–43

    Article  CAS  Google Scholar 

  • Ren NQ, Cao GL, Wang AJ, Lee DJ, Guo WQ, Zhu YH (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 33:6124–6132

    Article  CAS  Google Scholar 

  • Rodriguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93:592–606

    Article  CAS  Google Scholar 

  • Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. Int J Hydrog Energy 39:9000–9011

    Article  CAS  Google Scholar 

  • Shi XQ, Kim DH, Shin HS, Jung KW (2013) Effect of temperature on continuous fermentative hydrogen production from Laminaria japonica by anaerobic mixed cultures. Bioresour Technol 144:225–231

    Article  CAS  Google Scholar 

  • Soo CS, Yap WS, Hon WM, Phang LY (2015) Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation. World J Microbiol Biotechnol 31:1475–1488

    Article  CAS  Google Scholar 

  • Wang Y, Guo WQ, Cheng CL, Ho SH, Chang JS, Ren NQ (2016) Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol 200:557–564

    Article  CAS  Google Scholar 

  • Wu SH, Lin CY, Lee KS, Hung CH, Chang JS, Lin PG, Chang FY (2008) Dark fermentative hydrogen production from xylose in different bioreactors using sewage sludge microflora. Energy Fuels 22:113–119

    Article  CAS  Google Scholar 

  • Zhang M, Shukla P, Ayyachamy M, Permaul K, Singh S (2010) Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World J Microbiol Biotechnol 26:1041–1046

    Article  CAS  Google Scholar 

  • Zhao CX, Karakashev D, Lu WJ, Wang HT, Angelidaki I (2010) Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 °C) mixed culture. Int J Hydrog Energy 35:3415–3422

    Article  CAS  Google Scholar 

  • Zhao CX, Lu WJ, Wang HT, Pan XL (2013) Simultaneous hydrogen and ethanol production from a mixture of glucose and xylose using extreme thermophiles I: effect of substrate and pH. Int J Hydrog Energy 38:9701–9706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by the Tianjin Science and Technology Committee (Nos. 14ZCDGSF00032, 14JCZDJC41100), and the National Natural Science Foundation of China (Nos. 21206106, 51278174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Shi, P., Xiao, S. et al. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture. World J Microbiol Biotechnol 33, 7 (2017). https://doi.org/10.1007/s11274-016-2178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2178-1

Keywords

Navigation