Skip to main content
Log in

Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We report an eco-friendly method for the synthesis of copper nanoparticles (CuNPs) using Citron juice (Citrus medica Linn.), which is nontoxic and cheap. The biogenic copper nanoparticles were characterized by UV–Vis spectrophotometer showing a typical resonance (SPR) at about 631 nm which is specific for CuNPs. Nanoparticles tracking analysis by NanoSight-LM20 showed the particles in the range of 10–60 nm with the concentration of 2.18 × 108 particles per ml. X-ray diffraction revealed the FCC nature of nanoparticles with an average size of 20 nm. The antimicrobial activity of CuNPs was determined by Kirby-Bauer disk diffusion method against some selected species of bacteria and plant pathogenic fungi. It was reported that the synthesized CuNPs demonstrated a significant inhibitory activity against Escherichia coli followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Propionibacterium acnes and Salmonella typhi. Among the plant pathogenic fungi tested, Fusarium culmorum was found to be most sensitive followed by F. oxysporum and F. graminearum. The novelty of this work is that for the first time citron juice was used for the synthesis of CuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angrasan JKVM, Subbaiya R (2014) Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 3(9):768–774

    Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nano-silica from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  Google Scholar 

  • Betancourt-Galindo R, Reyes-Rodriguez PY, Puente-Urbina BA, Avila-Orta CA, Rodríguez-Fernández OS, Cadenas-Pliego G, Lira-Saldivar RH, García-Cerda LA (2014) Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J Nanomater. doi:10.1155/2014/980545

    Google Scholar 

  • Boutonnet M, Kizling J, Stenius P, Maire G (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf 5:209–225

    Article  CAS  Google Scholar 

  • Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles. Colloids Surf A 202:175–186

    Article  CAS  Google Scholar 

  • California Department of Pesticide Regulation (2009) CDPR Database. www.cdpr.ca.gov. Accessed on 11 Feb 2015

  • Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  CAS  Google Scholar 

  • Chattopadhyay DP, Patel BH (2010) Effect of nanosized colloidal copper on cotton fabric. J Eng Fibers Fabrics 5:1–6

    CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. J Bionanosci 4:82–86

    Article  CAS  Google Scholar 

  • De Oliveira-Filho EC, Lopes RM, Paumgartten FJR (2004) Comparative study on the susceptibility of fresh water species to copper-based pesticides. Chemosphere 56:369–374

    Article  Google Scholar 

  • Deryabin DG, Aleshina ES, Vasilchenko AS, Deryabin TD, Efremova LV, Karimov IF, Korolevskay LB (2013) Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russ 8(5):402–408

    Article  Google Scholar 

  • Dhas NA, Paul Raj C, Gedanken L (1998) Synthesis, characterization and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  CAS  Google Scholar 

  • Feitz AGJ, Waite D (2004) Process for producing a nanoscale zerovalent metal by reduction of inorganic salts with dithionite or borohydride application. Australia, CRC for Waste Management and Pollution Control Limited, p 36

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5:282–286

    Article  Google Scholar 

  • Garcia PC, Rivero RM, Ruiz JM, Romero L (2003) The role of fungicides in the physiology of higher plants:implications for defense responses. Botanical Rev 69:162–172

    Article  Google Scholar 

  • Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C (2007) Flavonoid composition of Citrus juices. Molecules 12:1641–1673

    Article  CAS  Google Scholar 

  • Gopinath M, Subbaiya S, Selvam MM, Suresh D (2014) Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 3(9):814–818

    CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Hirai H, Wakabayashi H, Komiyama M (1986) Preparation of polymer-protected colloidal dispersions of copper. Bull Chem Soc Jpn 59:367–372

    Article  CAS  Google Scholar 

  • Huang L, Jiang HQ, Zhang JS, Zhang ZJ, Zhang PY (2006) Synthesis of copper nanoparticles containing diamond-like carbon films by electrochemical method. Electrochem Commun 8:262–266

    Article  CAS  Google Scholar 

  • Ingle AP, Duran N, Rai M (2013) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  Google Scholar 

  • Joshi SS, Patil SF, Iyer V, Mahumuni S (1998) Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 10:1135–1144

    Article  CAS  Google Scholar 

  • Kabra AO, Bairagi GB, Mahamuni AS, Wanare RS (2012) In vitro Antimicrobial Activity and Phytochemical Analysis of the Peels of Citrus medica L. Inter J Res Pharma Biomed Sci 3:34–37

    Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Olga Rubilar, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 15:13–17

    Article  Google Scholar 

  • Kathad U, Gajera HP (2014) Synthesis of copper nanoparticles by two different methods and size comparison. Int J Pharm Bio Sci 5(3):533–540

    CAS  Google Scholar 

  • Kim J, Cho H, Ryu S, Choi M (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80

    Article  CAS  Google Scholar 

  • Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928

    Article  CAS  Google Scholar 

  • Kulkarni VD, Kulkarni PS (2013) Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud 1(3):1–4

  • Lee B, Kim Y, Yang S, Jeong I, Moon J (2009) A low-cure temperature copper nano ink for highly conductive printed electrodes. Curr Appl Phys 9:157–160

    Article  Google Scholar 

  • Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374

    CAS  Google Scholar 

  • Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977

    CAS  Google Scholar 

  • Lee H, Park SH, Seo SG, Kim SJ, Kim SC, Park YK, Jung SC (2014) Preparation and characterization of copper nanoparticles via the liquid phase plasma method. Curr Nanosci 10:7–10

    Article  CAS  Google Scholar 

  • Majumder DR (2012) Bioremediation:copper nanoparticles from electronic waste. Int J of Eng Sci Technol (IJEST) 4:4380–4389

    Google Scholar 

  • Mastin BJ, Rodgers JJH (2000) Toxicity and bioavailability of copper herbicides (clearigate, cutrine plus, and copper sulfate) to fresh water animals. Arch Environ Contamin Toxicol 39:445–451

    Article  CAS  Google Scholar 

  • Mittal J, Batra A, Singh A, Sharma MM (2014) Phytofabrication of nanoparticles through plant as nanofactories. Adv Nat Sci Nanosci Nanotechnol 5:043002

    Article  Google Scholar 

  • Montes-Burgos D, Hole WP, Smith J, Lynch I, Dawson K (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53

    Article  Google Scholar 

  • Mortazavi F, Ahmad J (2009) Acute renal failure due to copper sulfate poisoning: a case report. Iran J Pediatr 19:75–78

    Google Scholar 

  • Mott D, Galkowski J, Wang L, Luo J, Zhong CJ (2007) Synthesis of Size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745

    Article  CAS  Google Scholar 

  • Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12

    Article  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Elect J Environ Agri Food Chem 7:2942–2947

    CAS  Google Scholar 

  • Petranovskii V, Panina L, Bogomolova E, Belostotskaya G (2003) Microbiologically active nanocomposite media. Proc SPIE 5218:244–255

    Article  CAS  Google Scholar 

  • Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276

    Article  CAS  Google Scholar 

  • Ponce AA, Klabunde KJ (2005) Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J Mol Catal A: Chem 225:1–6

    Article  CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Sah AN, Juyal V, Melkani AB (2011) Antimicrobial activity of six different parts of the plant Citrus medica Linn. Pharmacogn J 3:80–83

    Google Scholar 

  • Saldanha PL, Brescia R, Prato M, Li H, Povia M, Manna L, Lesnyak V (2014) Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles. Chem Mater 26:1442–1449

    Article  CAS  Google Scholar 

  • Salvadori MR, Ando RA, Nascimento CAO, Correa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS ONE 9(1):e87968

    Article  Google Scholar 

  • Sampath M, Vijayan R, Tamilarasu E, Tamilselvan A, Sengottuvelan B (2014) Green synthesis of novel jasmine bud-shaped copper nanoparticles. J Nanotechnol. doi:10.1155/2014/626523

    Google Scholar 

  • Saranyaadevi K, Subha V, Ravindran RSE, Renganathan S (2014) Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int J ChemTech Res 6(10):4533–4541

    CAS  Google Scholar 

  • Sastry ABS, Aamanchi RBK, Rama Linga Prasad CS, Murty BS (2013) Large-scale green synthesis of Cu nanoparticles. Environ Chem Lett 11:183–187

    Article  CAS  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2:554–568

    Article  Google Scholar 

  • Sheibani S, Ataie A, Manesh SH, Khayati GR (2007) Structural evolution in nano-crystalline Cu synthesized by high energy ball milling. Mater Lett 61:3204–3207

    Article  CAS  Google Scholar 

  • Singh A, Kaur S, Kaur A, Aree T, Kaur N, Singh N, Bakshi M (2014) Aqueous-phase synthesis of copper nanoparticles using organic nanoparticles: application of assembly in detection of Cr3+. ACS Sustain Chem Eng 2:982–990

    Article  CAS  Google Scholar 

  • Song X, Sun S, Zhang W, Yin Z (2004) A method for synthesis of spherical copper nanoparticles in the organic phase. J Colloid Interface Sci 273:463–469

    Article  CAS  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp. for development of antimicrobial textiles. Global J Biotechnol Biochem 5:153–160

    CAS  Google Scholar 

  • Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Yunus WM (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936

    Article  CAS  Google Scholar 

  • Usman MS, Zowalaty MEE, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479

    Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119

    Article  CAS  Google Scholar 

  • Yang X, Chen S, Zhao S, Li D, Ma H (2003) Synthesis of copper nanorods using electrochemical methods. J Serb Chem Soc 68:843–847

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  Google Scholar 

  • Zhu YJ, Qian YT, Zhang MW, Chen ZY, Xu DF (1994) Preparation and characterization of nanocrystalline powders of cuprous oxide by using C-radiation. Mater Res Bull 29:377–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants commission, New Delhi for financial support under UGC-SAP and API is highly thankful to Department of Science and Technology, New Delhi for providing financial assistance under DST Fast Track Scheme for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shende, S., Ingle, A.P., Gade, A. et al. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31, 865–873 (2015). https://doi.org/10.1007/s11274-015-1840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1840-3

Keywords

Navigation