Skip to main content
Log in

Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus pumilus SG2 is a chitinolytic bacterium that produces two chitinases, namely ChiS and ChiL. The chiS and chiL genes are consecutively expressed under a common promoter. Regulation of the chiS and chiL genes is under the control of carbon catabolite repression (CCR) in B. pumilus. This study aimed to investigate the cis-acting elements of the chitinase promoter. For this purpose, we transferred the chiS gene along with its specific promoter to Bacillus subtilis as a host. Primer extension analysis revealed two transcription start sites located 287 and 65 bp upstream of the chiS start codon. The distal promoter was highly compatible with the consensus sequence of the σA-type promoters in B. subtilis, whereas the proximal promoter sequence showed less similarity to the σA-type consensus sequence. A catabolite responsive element (cre), which is required for CCR in Bacillus species, was found to be 136 to 123 bp upstream of the chiS start codon. Interestingly, this cre site was located upstream of the −35 of the proximal promoter and downstream of the distal promoter. Deletion of this cre site sequence rendered the chiS expression constitutive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadian G, Degrassi G, Venturi V, Zeigler DR, Soudi M, Zanguinejad P (2007) Bacillus pumilus SG2 isolated from saline conditions produces and secretes two chitinases. J Appl Microbiol 103:1081–1089

    Article  CAS  Google Scholar 

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    CAS  Google Scholar 

  • Bathily H, Babana AH, Samaké F (2010) Bacillus pumilus, a new pathogen on potato tubers in storage in Mali. AJMR 4(20):2067–2071

    Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  Google Scholar 

  • Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and rautoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148

    Article  Google Scholar 

  • Chu HH, Hoang V, Hofemeister J, Schrempf H (2001) A Bacillus amyloliquefaciens ChbB protein binds beta- and alpha-chitin and has homologues in related strains. Microbiology 147:1793–1803

    CAS  Google Scholar 

  • Delic I, Robbins PW, Westpheling J (1992) Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA 89:1885–1889

    Article  CAS  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  Google Scholar 

  • Fischer SH, Sonenshein AL (1991) Control of carbon and nitrogen metabolism in Bacillus subtilis. Ann Rev Microbiol 45:107–135

    Article  Google Scholar 

  • Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73:245–259

    Article  CAS  Google Scholar 

  • Galal AA, El-Bana AA, Janse J (2006) Bacillus pumilus, a new pathogenon mango plants. Egypt J Phytopathol 34(1):17–29

    Google Scholar 

  • Grundy FJ, Waters DA, Allen SHG, Henkin TM (1993) Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348–7355

    CAS  Google Scholar 

  • Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. John Wiley and Sons, Chichester

    Google Scholar 

  • Harwood CR, Wipat A (1996) Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Lett 389:84–87

    Article  CAS  Google Scholar 

  • Hueck CJ, Hillen W (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria. Mol Microbiol 15:395–401

    Article  CAS  Google Scholar 

  • Hueck CJ, Hillen W, Saier MH Jr (1994) Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria. Res Microbiol 145:503–518

    Article  CAS  Google Scholar 

  • Kim JH, Yang YK, Chambliss GH (2005) Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Mol Microbiol 56:155–162

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP (1996) Carbon catabolite repression of xylanase I (xynI) gene expression in Trichoderma reesei. Mol Microbiol 21:1273–1281

    Article  CAS  Google Scholar 

  • Michel JF, Millet J (1970) Physiological studies on early-blocked sporulation mutants of Bacillus subtilis. J Appl Bacteriol 33:220–227

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y (2000) Evaluation and characterization of catabolite responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28:1206–1210

    Article  CAS  Google Scholar 

  • Ni X, Westpheling J (1997) Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA 94:13116–13121

    Article  CAS  Google Scholar 

  • Pan J, Huang Q, Zhang Y (2004) Gene cloning and expression of an alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol 49:165–169

    Article  CAS  Google Scholar 

  • Park JK, Okamoto T, Yamasaki Y, Tanaka K, Nakagawa T, Kawamukai M, Matsuda H (1997) Molecular cloning, nucleotide sequencing, and regulation of the chiA gene encoding one of chitinases from Enterobacter sp. G-1. J Ferment Bioeng 84:493–501

    Article  CAS  Google Scholar 

  • Poncet S, Mijakovic I, Nessler S, Gueguen-Chaignon V, Chaptal V, Galinier A, Boel G, Maze A, Deutscher J (2004) HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria. Biochim Biophys Acta 1697:123–135

    Article  CAS  Google Scholar 

  • Reizer J, Bergstedt U, Galinier A, Kuster E, Saier MH Jr, Hillen W, Steinmetz M, Deutscher J (1996) Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. J Bacteriol 178:5480–5486

    CAS  Google Scholar 

  • Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH Jr, Hillen W (1998) A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 27:1157–1169

    Article  CAS  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Saier MH Jr (1998) Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 58:170–174

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York

    Google Scholar 

  • Schumacher M, Allen G, Diel M, Seidel G, Hillen W, Brennan R (2004) Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118:731–741

    Article  CAS  Google Scholar 

  • Shali A, Ghasemi SH, Ahmadian G, Ranjbar G, Dehestani A, Khalesi N, Motallebi E, Vahed M (2011) Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana. Phytoparasitica 38:141–147

    Article  Google Scholar 

  • Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Article  CAS  Google Scholar 

  • Sun T, Altenbuchner J (2010) Characterization of a mannose utilization system in Bacillus subtilis. J Bacteriol 192:2128–2139

    Article  CAS  Google Scholar 

  • Weickert MJ, Chambliss GH (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 87:6238–6242

    Article  CAS  Google Scholar 

  • Xiao L, Liu C, Xie C, Cai J, Chen YH (2012) The direct repeat sequence upstream of Bacillus chitinase genes is cis-acting elements that negatively regulate heterologous expression in E. coli. Enzyme Microb Technol 50:280–286

    Article  CAS  Google Scholar 

  • Yamamoto H, Mori M, Sekiguchi J (1999) Transcription of genes near the sspE locus of the Bacillus subtilis genome. Microbiology 145:2171–2180

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from National Institute of Genetic Engineering and Biotechnology (NIGEB) of Iran to project no; 377. Authors would like to thank Dr. J. Altenbuchner (Institut für Industrielle Genetik, Universität Stuttgart) and Prof. Dr. J.M. van Dijl (Faculty of Medical Sciences, Medical Microbiology, University of Groningen) for their comments and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ahmadian.

Additional information

K. Morabbi Heravi and A. Shali have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heravi, K.M., Shali, A., Naghibzadeh, N. et al. Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2. World J Microbiol Biotechnol 30, 1491–1499 (2014). https://doi.org/10.1007/s11274-013-1569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1569-9

Keywords

Navigation