Skip to main content
Log in

Characterization of regulatory regions involved in the inducible expression of chiB in Bacillus thuringiensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Expression of the chiB gene from Bacillus thuringiensis Bti75 was defined as inducible by the use of transcriptional fusions with the bgaB reporter gene. The transcription start site of the chiB gene was identified as the C base located 132 base pairs upstream of the start codon. Analysis of 5′ and 3′ deletions of the chiB promoter region revealed that the sequence from position −192 to +36 with respect to the transcription start site was necessary for wild-type levels of inducible expression of the chiB gene. The minimal promoter region for the expression of chiB gene was identified as the sequence from position −100 to +12. Furthermore, a 16-bp sequence (designated dre) downstream of the minimal promoter region of chiB was shown to be required for chitin induction. To confirm the function of this 16-bp sequence, 25 base substitutions were introduced into the dre site. Most of the mutations resulted in constitutive expression, or the efficiency of induction decreased. All mutations identified the dre sequence as a critical site for the inducible expression of chiB. In addition, the dre site was shown to interact with a sequence-specific DNA binding factor of strain Bti75 cultured in the absence of the inducer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arora N, Ahmad T, Rajagopal R, Bhatnagar RK (2003) A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem Biophys Res Commun 307(3):620–625

    Article  CAS  PubMed  Google Scholar 

  • Babashpour S, Aminzadeh S, Farrokhi N, Karkhane A, Haghbeen K (2012) Characterization of a chitinase (Chit62) from Serratia marcescens B4A and its efficacy as a bioshield against plant fungal pathogens. Biochem Genet 50(9–10):722–735

    Article  CAS  PubMed  Google Scholar 

  • Barboza-Corona JE, Nieto-Mazzocco E, Veldazquez-Robledo R, Salcedo-Hernandez R, Bautista M, Jimenez B, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69(2):1023–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barboza-Corona JE, Reyes-Rios DM, Salcedo-Hernandez R, Bideshi DK (2008) Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp kurstaki HD-73. Mol Biotechnol 39(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Bertram R, Rigali S, Wood N, Lulko AT, Kuipers OP, Titgemeyer F (2011) Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol 193(14):3525–3536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Camacho A, Salas M (2010) DNA bending and looping in the transcriptional control of bacteriophage phi29. FEMS Microbiol Rev 34(5):828–841

    CAS  PubMed  Google Scholar 

  • Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104(1):65–71

    Article  CAS  Google Scholar 

  • Chen YL, Lu W, Chen YH, Xiao L, Cai J (2007) Cloning, expression and sequence analysis of chiA, chiB in Bacillus thuringiensis subsp. colmeri 15A3. Wei Sheng Wu Xue Bao 47(5):843–848

    CAS  PubMed  Google Scholar 

  • Colson S, Stephan J, Hertrich T, Saito A, van Wezel GP, Titgemeyer F, Rigali S (2007) Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol 12(1–2):60–66

    Article  CAS  PubMed  Google Scholar 

  • Delic I, Robbins P, Westpheling J (1992) Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA 89(5):1885–1889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delpin MW, Goodman AE (2009) Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J 3(9):1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Driss F, Kallassy-Awad M, Zouari N, Jaoua S (2005) Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99(4):945–953

    Article  CAS  PubMed  Google Scholar 

  • Driss F, Rouis S, Azzouz H, Tounsi S, Zouari N, Jaoua S (2011) Integration of a recombinant chitinase into Bacillus thuringiensis parasporal insecticidal crystal. Curr Microbiol 62(1):281–288

    Article  CAS  PubMed  Google Scholar 

  • Estrem ST, Gaal T, Ross W, Gourse RL (1998) Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA 95(17):9761–9766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francetic O, Badaut C, Rimsky S, Pugsley AP (2000) The ChiA (YheB) protein of Escherichia coli K-12 is an endochitinase whose gene is negatively controlled by the nucleoid-structuring protein H-NS. Mol Microbiol 35(6):1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotech Biochem 73(2):245–259

    Article  CAS  Google Scholar 

  • Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Gourse RL, Ross W, Gaal T (2000) UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 37(4):687–695

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD (1995) Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23(13):2351–2360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heravi KM, Shali A, Naghibzadeh N, Ahmadian G (2014) Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2. World J Microbiol Biotechnol 30(5):1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Hsu LM (2002) Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 1577(2):191–207

    Article  CAS  PubMed  Google Scholar 

  • Hu SB, Liu P, Ding XZ, Yan L, Sun YJ, Zhang YM, Li WP, Xia LQ (2009) Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Appl Microbiol Biotechnol 82(6):1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zhang X, Li Y, Ding X, Hu X, Yang Q, Xia L (2013) Constructing Bacillus thuringiensis strain that co-expresses Cry2Aa and chitinase. Biotechnol Lett 35(7):1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Jacobs E, Mills JD, Janitz M (2012) The role of RNA structure in posttranscriptional regulation of gene expression. J Genet Genomics 39(10):535–543

    Article  CAS  PubMed  Google Scholar 

  • Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8(7):1988–2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura M, Kimura J, Ashman K (1985) The complete primary structure of ribosomal proteins L1, L14, L15, L23, L24 and L29 from Bacillus stearothermophilus. Eur J Biochem 150(3):491–497

    Article  CAS  PubMed  Google Scholar 

  • Kraus A, Hueck C, Gartner D, Hillen W (1994) Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol 176(6):1738–1745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58(3):840–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu D, Cai J, Xie CC, Liu C, Chen YH (2010) Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp colmeri, and its biocontrol potential. Enzyme Microb Tech 46(3–4):252–256

    Article  CAS  Google Scholar 

  • Ni X, Westpheling J (1997) Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA 94(24):13116–13121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ozgen A, Sezen K, Demir I, Demirbag Z, Nalcacioglu R (2013) Molecular characterization of chitinase genes from a local isolate of Serratia marcescens and their contribution to the insecticidal activity of Bacillus thuringiensis strains. Curr Microbiol 67(4):499–504

    Article  CAS  PubMed  Google Scholar 

  • Park JK, Okamoto T, Yamasaki Y, Tanaka K, Nakagawa T, Kawamukai M, Matsuda H (1997) Molecular cloning, nucleotide sequencing, and regulation of the chiA gene encoding one of chitinases from Enterobacter sp. G-1. J Ferment Bioeng 84(6):493–501

    Article  CAS  Google Scholar 

  • Pinto FL, Lindblad P (2010) A guide for in-house design of template-switch-based 5′ rapid amplification of cDNA ends systems. Anal Biochem 397(2):227–232

    Article  PubMed  Google Scholar 

  • Purushotham P, Podile AR (2012) Synthesis of long-chain chitooligosaccharides by a hypertransglycosylating processive endochitinase of Serratia proteamaculans 568. J Bacteriol 194(16):4260–4271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Resch M, Roth HM, Kottmair M, Sevvana M, Bertram R, Titgemeyer F, Muller YA (2009) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of YvoA from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun 65(Pt 4):410–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56(3–4):395–401

    Article  CAS  PubMed  Google Scholar 

  • Vu KD, Yan S, Tyagi RD, Valero JR, Surampalli RY (2009) Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate. Bioresour Technol 100(21):5260–5269

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Wu SJ, Thottappilly G, Locy RD, Singh NK (2001) Molecular cloning and structural analysis of the gene encoding Bacillus cereus exochitinase Chi36. J Biosci Bioeng 92(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Liu C, Xie C-c, Cai J, Chen Y-h (2012) The direct repeat sequence upstream of Bacillus chitinase genes is cis-acting elements that negatively regulate heterologous expression in E. coli. Enzyme Microb Tech 50(6–7):280–286

    Article  CAS  Google Scholar 

  • Xie C, Chen Y, Cai J, Liu C (2010) Essential expression and inducible synthesis polymorphism of chitinase in Bacillus thuringiensis. Sheng wu gong cheng xue bao 26(11):1532–1538

    CAS  PubMed  Google Scholar 

  • Xie CC, Luo Y, Chen YH, Cai J (2012) Construction of a promoter-probe vector for Bacillus thuringiensis: the identification of cis-acting elements of the chiA locus. Curr Microbiol 64(5):492–500

    Article  CAS  PubMed  Google Scholar 

  • Zhong WF, Fang JC, Cai PZ, Yan WZ, Wu J, Guo HF (2005) Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein. Genet Mol Biol 28(4):821–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31371979), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120031110019) and the Tianjin Natural Science Foundation (No. 12JCYBJC198000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Hua Chen.

Additional information

Communicated by Eriko Takano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, CC., Shi, J., Jia, HY. et al. Characterization of regulatory regions involved in the inducible expression of chiB in Bacillus thuringiensis . Arch Microbiol 197, 53–63 (2015). https://doi.org/10.1007/s00203-014-1054-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1054-3

Keywords

Navigation