Skip to main content
Log in

Aerobic metabolism and oxidative stress tolerance in the Lactobacillus plantarum group

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aerobic metabolism and response to oxidative stress and starvation were studied in 11 Lactobacillus plantarum, L. paraplantarum and L. pentosus strains in order to assess the impact of aerobic metabolism on the growth and on the stress response. The strains were grown in aerobiosis without supplementation (AE), with hemin (AEH) or with hemin and menaquinone (AEHM) supplementation and in anaerobiosis (AN) in a complex buffered substrate. Growth rate, biomass yield, glucose and O2 consumption, production of lactic acid and H2O2, catalase activity, oxidative and starvation stress tolerance were evaluated. Aerobic growth increased biomass yield in late stationary phase. Further increase in yield was obtained with both hemin (H) and menaquinone (M) addition. With few exceptions, the increase in biomass correlated with the decrease of lactic acid which, however, decreased in anaerobic conditions as well in some strains. Addition of H or H + M increased growth rate for some strains but reduced the duration of the lag phase. H2O2 production was found only for aerobic growth with no supplementation due to catalase production when hemin was supplemented. To our knowledge this is the first study in which the advantages of aerobic growth with H or H + M in improving tolerance of oxidative stress and long-term survival is demonstrated on several strains of the L. plantarum group. The results may have significant technological consequences for both starter and probiotic production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abriouel H, Herrmann A, Stärke J, Yousif NMK, Wijaya A, Tauscher B, Holzapfel W, Franz CMAP (2004) Cloning and heterologous expression of hematin dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70:603–606

    Article  CAS  Google Scholar 

  • An H, Zhou H, Huang Y, Wang G, Luan C, Mou J, Luo Y, Hao Y (2010) High-level expression of heme-dependent catalase gene kata from Lactobacillus sakei protects Lactobacillus rhamnosus from oxidative stress. Mol Biotechnol 45:155–160

    Article  CAS  Google Scholar 

  • Baranyi J, Le Marc Y (1996) Dmfit manual, Version 2.0. Institute of Food Research, Norwich, UK

  • Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294

    Article  CAS  Google Scholar 

  • Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ, Whittaker JW (2001) Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9:725–738

    Article  CAS  Google Scholar 

  • Brooijmans RJ, Poolman B, Schuurman-Wolters GK, de Vos WM, Hugenholtz J (2007) Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189:5203–5209

    Article  CAS  Google Scholar 

  • Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J (2009a) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 29:8–28

    Google Scholar 

  • Brooijmans R, de Vos WM, Hugenholtz J (2009b) Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75:3580–3585

    Article  CAS  Google Scholar 

  • Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516

    Article  CAS  Google Scholar 

  • Figenschou DL, Marais JP (1991) Spectrophotometric method for the determination of microquantities of lactic acid in biological samples. Anal Biochem 195:308–312

    Article  CAS  Google Scholar 

  • Frankenberg L, Brugna M, Hederstedt L (2002) Enterococcus faecalis heme-dependent catalase. J Bacteriol 184:6351–6356

    Article  CAS  Google Scholar 

  • Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaiki L, Lamberet G, Sourice S, Duwat P, Gruss A (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82:263–269

    Article  CAS  Google Scholar 

  • Goffin P, Lorquet F, Kleerebezem M, Hols P (2004) Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. J Bacteriol 186:6661–6666

    Article  CAS  Google Scholar 

  • Goffin P, Muscariello L, Lorquet F, Stukkens A, Prozzi D, Sacco M, Kleerebezem M, Hols P (2006) Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth. Appl Environ Microbiol 72:7933–7940

    Article  CAS  Google Scholar 

  • Götz F, Sedewitz B, Elstner EF (1980) Oxygen utilization by Lactobacillus plantarum I. oxygen consuming reactions. Arch Microbiol 125:209–214

    Article  Google Scholar 

  • Hickey MW, Hillier AJ, Jago GR (1983) Metabolism of pyruvate and citrate in lactobacilli. Aust J Biol Sci 36:487–496

    CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  CAS  Google Scholar 

  • Knauf HJ, Vogel RF, Hammes WP (1992) Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58:832–839

    CAS  Google Scholar 

  • Koebmann B, Blank LM, Solem C, Petranovic D, Nielsen LK, Jensen PR (2008) Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Biotechnol Appl Biochem 50:25–33

    Article  CAS  Google Scholar 

  • Konings WN, Lolkema JS, Bolhuis H, van Veen HW, Poolman B, Driessen AJ (1997) The role of transport processes in survival of lactic acid bacteria. energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 7:117–128

    Article  Google Scholar 

  • Kono Y, Fridovich I (1983a) Functional significance of manganese catalase in Lactobacillus plantarum. J Bacteriol 155:742–746

    CAS  Google Scholar 

  • Kono Y, Fridovich I (1983b) Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J Biol Chem 258:6015–6019

    CAS  Google Scholar 

  • Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotech 22:143–149

    Article  CAS  Google Scholar 

  • Lopez de Felipe F, Gaudu P (2009) Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Appl Microbiol Biot 82:1115–1122

    Article  CAS  Google Scholar 

  • Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P (2004) Characterization and functional analysis of the poxB Gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 186:3749–3759

    Article  CAS  Google Scholar 

  • Mares A, Neyts K, Debevere J (1994) Influence of pH, salt and nitrite on the heme-dependent catalase activity of lactic acid bacteria. Int J Food Microbiol 24:191–198

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Murphy MG, Condon S (1984a) Comparison of aerobic and anaerobic growth of Lactobacillus plantarum in a glucose medium. Arch Microbiol 138:49–53

    Article  CAS  Google Scholar 

  • Murphy MG, Condon S (1984b) Correlation of oxygen utilisation and hydrogen peroxide accumulation with oxygen induced enzymes in Lactobacillus plantarum cultures. Arch Microbiol 138:44–48

    Article  CAS  Google Scholar 

  • Parente E, Ciocia F, Ricciardi A, Zotta T, Felis GE, Torriani S (2010) Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus paraplantarum: a multivariate screening study. Int J Food Microbiol 144:270–279

    Article  CAS  Google Scholar 

  • Passos F, Fleming HP, Ollis DF, Felder RM, McFeeters RF (1994) Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Appl Environ Microbiol 60:2627–2636

    CAS  Google Scholar 

  • Quatravaux S, Remize F, Bryckaert E, Colavizza D, Guzzo J (2006) Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters. J Appl Microbiol 101:903–912

    Article  CAS  Google Scholar 

  • Rezaiki L, Cesselin B, Yamamoto Y, Vido K, Van West E, Gaudu P, Gruss A (2004) Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 53:1331–1342

    Article  CAS  Google Scholar 

  • Risse B, Stempfer G, Rudolph R, Mollering H, Jaenicke R (1992) Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction. Protein Sci 1:1699–1709

    Article  CAS  Google Scholar 

  • Sakamoto M, Komagata K (1996) Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 82:210–216

    Article  CAS  Google Scholar 

  • Sedewitz B, Schleifer KH, Götz F (1984) Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum. J Bacteriol 160:273–278

    CAS  Google Scholar 

  • Stevens MJA, Wiersma A, de Vos WM, Kuipers OP, Smid EJ, Molenaar D, Kleerebezem M (2008) Improvement of Lactobacillus plantarum aerobic growth, directed by comprehensive transcriptome Analysis. Appl Environ Microbiol 74:4776–4778

    Article  CAS  Google Scholar 

  • Stiles EM, Holzapfel HW (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  CAS  Google Scholar 

  • Tseng CP, Tsau JL, Montville TJ (1991) Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures. J Bacteriol 173:4411–4416

    CAS  Google Scholar 

  • Watanabe M, van der Veen S, Nakajima H, Abee T (2012a) Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiology 158:293–300

    Article  CAS  Google Scholar 

  • Watanabe M, van der Veen S, Abee T (2012b) Impact of respiration on resistance of Lactobacillus plantarum WCFS1 to acid stress. Appl Environ Microbiol 78:4062–4064

    Article  CAS  Google Scholar 

  • Wolf G, Strahl A, Meisel J, Hammes WP (1991) Heme-dependent catalase activity of lactobacilli. Int J Food Microbiol 12:133–140

    Article  CAS  Google Scholar 

  • Yousten AA, Johnson JL, Salin M (1975) Oxygen metabolism of catalase-negative and catalase-positive strains of Lactobacillus plantarum. J Bacteriol 123:242–247

    CAS  Google Scholar 

  • Zotta T, Guidone A, Tremonte P, Parente E, Ricciardi A (2012a) A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World J Microb Biot 28:919–927

    Article  CAS  Google Scholar 

  • Zotta T, Ricciardi A, Guidone A, Sacco M, Muscariello L, Mazzeo MF, Cacace G, Parente E (2012b) Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance Lactobacillus plantarum WCFS1. Int J Food Microbiol 155:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by Ministero dell’Istruzione, dell’Università e della Ricerca, Rome, Italy, PRIN n. 20088SZB9B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guidone.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidone, A., Ianniello, R.G., Ricciardi, A. et al. Aerobic metabolism and oxidative stress tolerance in the Lactobacillus plantarum group. World J Microbiol Biotechnol 29, 1713–1722 (2013). https://doi.org/10.1007/s11274-013-1334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1334-0

Keywords

Navigation