Skip to main content
Log in

High-Level Expression of Heme-Dependent Catalase Gene katA from Lactobacillus Sakei Protects Lactobacillus Rhamnosus from Oxidative Stress

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are generally sensitive to hydrogen peroxide (H2O2), Lactobacillus sakei YSI8 is one of the very few LAB strains able to degrade H2O2 through the action of a heme-dependent catalase. Lactobacillus rhamnosus strains are very important probiotic starter cultures in meat product fermentation, but they are deficient in catalase. In this study, the effect of heterologous expression of L. sakei catalase gene katA in L. rhamnosus on its oxidative stress resistance was tested. The recombinant L. rhamnosus AS 1.2466 was able to decompose H2O2 and the catalase activity reached 2.85 μmol H2O2/min/108 c.f.u. Furthermore, the expression of the katA gene in L. rhamnosus conferred enhanced oxidative resistance on the host. The survival ratios after short-term H2O2 challenge were increased 600 and 104-fold at exponential and stationary phase, respectively. Further, viable cells were 100-fold higher in long-term aerated cultures. Simulation experiment demonstrated that both growth and catalase activity of recombinant L. rhamnosus displayed high stability under environmental conditions similar to those encountered during sausage fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McKay, L. L., & Balwin, K. A. (1990). Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiology Reviews, 87, 3–14.

    Article  CAS  Google Scholar 

  2. Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15, 67–78.

    Article  CAS  Google Scholar 

  3. Erkkilä, S., Suihko, M. L., Eerola, S., Petäjä, E., & Mattila-Sandholm, T. (2001). Dry sausage fermented by Lactobacillus rhamnosus strains. International Journal of Food Microbiology, 64, 205–210.

    Article  Google Scholar 

  4. De Vuyst, L., Falony, G., & Leroy, F. (2008). Probiotics in fermented sausages. Meat Science, 80, 75–78.

    Article  CAS  Google Scholar 

  5. Berlett, B. S., & Rtadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272, 20313–20316.

    Article  CAS  Google Scholar 

  6. Imlay, J. A. (2003). Pathways of oxidative damage. Annual Review of Microbiology, 57, 395–418.

    Article  CAS  Google Scholar 

  7. Abriouel, H., Herrmann, A., Stärke, J., Yousif, N. M., Wijaya, A., Tauscher, B., et al. (2004). Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Applied and Environmental Microbiology, 70, 603–606.

    Article  CAS  Google Scholar 

  8. Delwiche, E. A. (1961). Catalase of Pediococcus cerevisiae. Journal of Bacteriology, 81, 416–418.

    CAS  Google Scholar 

  9. Igarashi, T., Kono, Y., & Tanaka, K. (1996). Molecular cloning of manganese catalase from Lactobacillus plantarum. Journal of Biological Chemistry, 271, 29521–29524.

    Article  CAS  Google Scholar 

  10. Knauf, H. J., Vogel, R. F., & Hammes, W. P. (1992). Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Applied and Environmental Microbiology, 58, 832–839.

    CAS  Google Scholar 

  11. Wolf, G., Strahl, A., Meisel, J., & Hammes, W. P. (1991). Heme-dependent catalase activity of lactobacilli. International Journal of Food Microbiology, 12, 133–140.

    Article  CAS  Google Scholar 

  12. Noonpakdee, W., Sitthimonchai, S., Panyim, S., & Lertsiri, S. (2004). Expression of the catalase gene katA in starter culture Lactobacillus plantarum TISTR850 tolerates oxidative stress and reduces lipid oxidation in fermented meat product. International Journal of Food Microbiology, 95, 127–135.

    Article  CAS  Google Scholar 

  13. Rochat, T., Miyoshi, A., Gratadoux, J. J., Duwat, P., Sourice, S., Azevedo, V., et al. (2005). High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiology, 151, 3011–3018.

    Article  CAS  Google Scholar 

  14. Rochat, T., Gratadoux, J. J., Gruss, A., Corthier, G., Maguin, E., Langella, P., et al. (2006). Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Applied and Environmental Microbiology, 72, 5143–5149.

    Article  CAS  Google Scholar 

  15. Rhee, K. S., Ziprin, Y. A., & Ordonez, G. (1987). Catalysis of lipid oxidation in raw and cooked beef by metmyoglobin–H2O2, nonheme iron, and enzyme systems. Journal of Agriculture and Food Chemistry, 35, 1013–1017.

    Article  CAS  Google Scholar 

  16. Whittenbury, R. (1964). Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. Journal of General Microbiology, 35, 13–26.

    CAS  Google Scholar 

  17. Sørvig, E., Grönqvist, S., Naterstad, K., Mathiesen, G., Eijsink, V., & Axelsson, L. (2003). Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiology Letters, 229, 119–126.

    Article  Google Scholar 

  18. de Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 23, 130–135.

    Google Scholar 

  19. van de Guchte, M., van der Vossen, J. M., Kok, J., & Venema, G. (1989). Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp lactis. Applied and Environmental Microbiology, 55, 224–228.

    Google Scholar 

  20. te Riele, H., Michel, B., & Ehrlich, S. D. (1986). Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 83, 2541–2545.

    Article  CAS  Google Scholar 

  21. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  22. Thompson, K., & Collins, M. A. (1996). Improvement in electroporation efficiency for Lactobacillus plantarum by the inclusion of high concentrations of glycine in the growth medium. Journal of Microbiol Methods, 26, 73–79.

    Article  CAS  Google Scholar 

  23. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  CAS  Google Scholar 

  24. Mares, A., Neyts, K., & Debevere, J. (1994). Influence of pH, salt and nitrite on the heme-dependent catalase activity of lactic acid bacteria. International Journal of Food Microbiology, 24, 191–198.

    Article  CAS  Google Scholar 

  25. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonic Leeuwenhoek, 82, 187–216.

    Article  Google Scholar 

  26. Ueda, M., Kinoshita, H., Maeda, S. I., & Zou, W. (2003). Structure–function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression. Applied Microbiology and Biotechnology, 61, 488–494.

    CAS  Google Scholar 

  27. Bravo, J., Verdaguer, N., Tormo, J., Betzel, C., Switala, J., Loewen, P. C., et al. (1995). Crystal structure of catalase HPII from Escherichia coli. Structure, 3, 491–502.

    Article  CAS  Google Scholar 

  28. Zhou, X. X., Li, W. F., Ma, G. X., & Pan, Y. J. (2006). The nisin-controlled gene expression system: construction, application and improvements. Biotechnology Advances, 24, 285–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Xinghua Guo (Institute of Microbiology Chinese Academy of Sciences) for providing Lactobacillus rhamnosus AS 1.2466 and Elisabeth Sørvig (Agricultural University of Norway) for the gift of plasmid pSIP502. This work was supported by National High-Tech R&D Program Grants (2007AA10Z354 and 2006AA10Z317) from the Ministry of Science and Technology of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, H., Zhou, H., Huang, Y. et al. High-Level Expression of Heme-Dependent Catalase Gene katA from Lactobacillus Sakei Protects Lactobacillus Rhamnosus from Oxidative Stress. Mol Biotechnol 45, 155–160 (2010). https://doi.org/10.1007/s12033-010-9254-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9254-9

Keywords

Navigation