Skip to main content
Log in

Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aluminum (Al) toxicity is a major factor that limits crop productivity in acid soils. The toxic effects of Al exposure on Al-tolerant Cryptococcus humicola were analyzed at the physiological level. The exposure to 20 mM Al led to a clear increase in malondialdehyde content and a significant decrease in the levels of protein carbonyls, suggesting that Al stress caused oxidative damage to membrane lipids but not to proteins. Suppression subtractive hybridization (SSH) results showed that when C. humicola was exposed to 20 mM Al, a total of 141 ESTs were differentially expressed. Of them, 27 had unknown functions and 48 were newly identified in this study. The genes with known functions were categorized into seven groups. The largest group was related to metabolism and energy, followed by protein synthesis and processing, cell structure, signal transduction and transcription, transporters, stress and defense. Reverse transcription (RT)-PCR analysis of certain genes was performed to confirm the reliability of the SSH data. Nine selected genes were upregulated by Al in a time-dependent manner. The potential functions of some genes involved in Al-tolerance were predicted and are discussed. The diversity of the putative functions of these genes indicates that Al stress results in a complex response in C. humicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217

    Article  CAS  Google Scholar 

  • Basu U, Southron JL, Stephens JL, Taylor GJ (2004) Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol Genet Genomics 271:627–637

    Article  CAS  Google Scholar 

  • Brosche M, Strid A (1999) Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses. Plant Physiol 121:479–487

    Article  CAS  Google Scholar 

  • Cabib E, Drgonova J, Drgon T (1998) Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem 67:307–333

    Article  CAS  Google Scholar 

  • Chandran D, Sharopova N, Ivashuta S, Gantt JS, Vandenbosch KA, Samac DA (2008a) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–166

    Article  CAS  Google Scholar 

  • Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA (2008b) Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol 8:89

    Article  Google Scholar 

  • Chen LS, Qi YP, Liu XH (2005) Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot 96:35–41

    Article  CAS  Google Scholar 

  • Chen Q, Zhang XD, Wang SS, Wang QF, Wang GQ, Nian HJ, Li KZ, Yu YX, Chen LM (2011) Transcriptional and physiological changes of alfalfa in response to aluminium stress. J Agric Sci 149:737–751

    Article  CAS  Google Scholar 

  • Cruz-Ortega R, Cushman JC, Ownby JD (1997) cDNA clones encoding 1, 3-β-glucanase and a wmbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114:1453–1460

    Article  CAS  Google Scholar 

  • da Silva AL, Sperling P, Horst W, Franke S, Ott C, Becker D, Stass A, Lörz H, Heinz E (2006) A possible role of sphingolipids in the aluminium resistance of yeast and maize. J Plant Physiol 163(1):26–38

    Article  Google Scholar 

  • Darko É, Ambrus H, Stefanovits-banyai É, Fodor J, Bakos F, Barnabas B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  CAS  Google Scholar 

  • Deng W, Luo K, Li D, Zheng X, Wei X, Smith W, Thammina C, Lu L, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    Article  CAS  Google Scholar 

  • Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. J Inorg Biochem 97:59–68

    Article  CAS  Google Scholar 

  • Eleftheriou E, Moustakas M, Fragiskos N (1993) Aluminate induced changes in morphology and ultrastructure of Thinopyrum roots. J Exp Bot 44:427–436

    Article  CAS  Google Scholar 

  • Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745–2756

    Article  CAS  Google Scholar 

  • Goodwin SB, Sutter TR (2009) Microarray analysis of Arabidopsis genome response to aluminum stress. Biol Plantarum 53:85–99

    Article  CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhang YH (2007) Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf B Biointerfaces 57:182–188

    Article  CAS  Google Scholar 

  • Gurel A, Coskun O, Armutcu F, Kanter M, Ozen OA (2005) Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: biochemical and histological studies. J Chem Neuroanat 29:173–178

    Article  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001a) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001b) Vacuolar H+-ATPase, but not mitochondrial F1F10-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett 205:231–236

    Article  CAS  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  CAS  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A et al (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905

    Google Scholar 

  • Kakimoto M, Kobayashi A, Fukuda R, Ono Y, Ohta A, Yoshimura E (2005) Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae. Biometals 18:467–474

    Article  CAS  Google Scholar 

  • Kawai F, Zhang D, Sugimoto M (2000) Isolation and characterization of acid- and Al-tolerant microorganisms. FEMS Microbiol Lett 189:143–147

    Article  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906

    Article  CAS  Google Scholar 

  • Komatsu S, Konishi H (2005) Proteome analysis of rice root proteins regulated by gibberellins. Genomics Proteomics Bioinform 3:132–142

    Google Scholar 

  • Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics 279:339–357

    Article  CAS  Google Scholar 

  • Kurita H, Nakatomi A, Shimahara H, Yazawa M, Ohki S (2005) Al3+ interaction sites of calmodulin and the Al3+ effect on target binding of calmodulin. Biocheml Biophys Res Commun 333:1060–1065

    Article  CAS  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  CAS  Google Scholar 

  • Leubner-Metzger G, Meins FJ (1999) Functions and regulation of plant β-1, 3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 49–76

    Google Scholar 

  • Li X, Qian J, Wang C, Zheng K, Ye L, Fu Y, Han N, Bian H, Pan J, Wang J, Zhu M (2011) Regulating cytoplasmic calcium homeostasis can reduce aluminum toxicity in yeast. PLoS ONE 6(6):e21148

    Article  CAS  Google Scholar 

  • MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732

    Article  CAS  Google Scholar 

  • Madden K, Snyder M (1998) Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52:687–744

    Article  CAS  Google Scholar 

  • Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminum-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminum-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  CAS  Google Scholar 

  • Milla MA, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  CAS  Google Scholar 

  • Osawa H, Matsumoto H (2001) Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol 126:411–420

    Article  CAS  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314

    Article  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK et al (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Google Scholar 

  • Sasaki M, Yamamoto Y, Matsumoto H (1996) Ligin deposition induced by aluminium in wheat (Triticum aestivum) roots. Physiol Plantarum 96:193–198

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  Google Scholar 

  • Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14:305–338

    Article  CAS  Google Scholar 

  • Schott EJ, Gardner RC (1997) Aluminum-sensitive mutants of Saccharomyces cerevisiae. Mol Gen Genet 254:63–72

    Article  CAS  Google Scholar 

  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296

    Article  CAS  Google Scholar 

  • Singh R, Beriault R, Middaugh J, Hamel R, Chenier D, Appanna VD, Kalyuzhnyi S (2005) Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles 9:367–373

    Article  CAS  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  CAS  Google Scholar 

  • Sugimoto M, Sakamoto W (1997) Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet Syst 72:311–316

    Article  CAS  Google Scholar 

  • Tani A, Zhang D, Duine JA, Kawai F (2004) Treatment of the yeast Rhodotorula glutinis with AlCl3 leads to adaptive acquirement of heritable aluminum resistance. Appl Microbiol Biotechnol 65:344–348

    Article  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  CAS  Google Scholar 

  • Watt DA (2003) Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot 54:1163–1174

    Article  CAS  Google Scholar 

  • Wu Y, Wang Q, Ma Y, Chu C (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Sci 168:847–853

    Article  CAS  Google Scholar 

  • Zaragoza O, Chrisman CJ, Castelli MV et al (2008) Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 10:2043–2057

    Article  CAS  Google Scholar 

  • Zheng J, Zhao JF, Tao YZ et al (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol 55:807–823

    Google Scholar 

  • Zheng K, Pan JW, Ye L et al (2007) Programmed cell death involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals. Plant Physiol 143:38–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the foundation of the National Basic Research Program of China (2007CB108901), by the National Natural Science Foundation of China (31160020), and by the Application of Basic Research Foundation (2009ZC014X) from Yunnan province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Chen.

Additional information

Hongjuan Nian and Geqi Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nian, H., Wang, G. & Chen, L. Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola . World J Microbiol Biotechnol 28, 2319–2329 (2012). https://doi.org/10.1007/s11274-012-1039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1039-9

Keywords

Navigation