Skip to main content
Log in

Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Melanin produced by a dark septate endophyte, Exophiala pisciphila, was isolated and purified. The solubility properties, Ultraviolet–visible and Fourier transform infrared spectra of the purified E. pisciphila melanin were similar to those of typical melanin. Inhibition of melanin production was observed when colonies exposed to tricyclazole (1,8-dihydroxynaphthalene (DHN) melanin inhibitor), but not to kojic acid (3,4-dihydroxyphenylalanine melanin inhibitor). Thus the E. pisciphila melanin was a member of DHN melanin family. In addition, the antioxidant activities of E. pisciphila melanin were evaluated in vitro by 1,1-diphenyl-2-picryl-hydrazyl radical-scavenging assay. E. pisciphila melanin exhibited a strong antioxidant activity. Addition of 50–350 mg L−1 Cd(II) to the medium increased the melanin production in E. pisciphila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

DSE:

Dark septate endophyte

UV:

Ultraviolet–visible

FTIR:

Fourier transform infrared

DHN:

1,8-dihydroxynaphthalene

DOPA:

3,4-dihydroxyphenylalanine

DPPH:

1,1-diphenyl-2-picryl-hydrazyl

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83(1):1–13. doi:10.1139/B04-171

    Article  Google Scholar 

  • Babitskaya VG, Shcherba VV, Filimonova TV, Grigorchuk EA (2000a) Melanin pigments from the fungi Paecilomyces variotii and Aspergillus carbonarius. Appl Biochem Microbiol 36(2):128–133. doi:10.1007/BF02737906

    Article  Google Scholar 

  • Babitskaya VG, Shcherba VV, Lkonnikova NV (2000b) Melanin complex of the fungus Inonotus obliquus. Appl Biochem Microbiol 36(4):377–381. doi:10.1007/BF02738046

    Article  Google Scholar 

  • Bassam SE, Benhamou N, Carisse O (2002) The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea. Can J Microbiol 48(4):349–358

    Article  Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24(1):411–451. doi:10.1146/annurev.py.24.090186.002211

    Article  CAS  Google Scholar 

  • Buszman E, Pilawa B, Zdybel M, Wilczynski S, Gondzik A, Witoszynska T, Wilczok T (2006) EPR examination of Zn2+ and Cu2+ binding by pigmented soil fungi Cladosporium cladosporioides. Sci Total Environ 363(1–3):195–205. doi:10.1016/j.scitotenv.2005.05.028

    CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44(12):1115–1136. doi:10.1139/cjm-44-12-1115

    Article  CAS  Google Scholar 

  • Caesar-Tonthat T, van Ommen Kloeke F, Geesey GG, Henson JM (1995) Melanin production by a filamentous soil fungus in response to copper and localization of copper sulfide by sulfide-silver staining. Appl Environ Microbiol 61(5):1968–1975

    CAS  Google Scholar 

  • Chen Y, Xie MY, Nie SP, Li C, Wang YX (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107(1):231–241. doi:10.1016/j.foodchem.2007.08.021

    Article  CAS  Google Scholar 

  • Deram A, Languereau-Leman F, Howsam M, Petit D, Haluwyn CV (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (poaceae): influence of mycorrhizal and endophytic fungal colonisation. Soil Biol Biochem 40(3):845–848. doi:10.1016/j.soilbio.2007.09.023

    Article  CAS  Google Scholar 

  • Elliott mL (1995) Effect of melanin biosynthesis inhibiting compounds on Gaeumannomyces species. Mycologia 87(3):370–374. doi:10.2307/3760835

    Article  CAS  Google Scholar 

  • Ellis DH, Griffiths DA (1974) The location and analysis of melanins in the cell walls of some soil fungi. Can J Microbiol 20(10):1379–1386

    Article  CAS  Google Scholar 

  • Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19(4):311–317. doi:10.1016/0141-0229(96)00002-6

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124(1):25–60. doi:10.1111/j.1469-8137.1993.tb03796.x

    Article  CAS  Google Scholar 

  • Gadd GM, Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29(6):610–617. doi:10.1007/BF00260993

    Article  CAS  Google Scholar 

  • Gaskins JE, Cheung PJ (1986) Exophiala pisciphila: a study of its development. Mycopathologia 93(3):173–184. doi:10.1007/BF00443521

    Article  CAS  Google Scholar 

  • Gessler NN, Aver¡¯yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Mosc) 72(10):1091–1109. doi:10.1134/S0006297907100070

    Article  CAS  Google Scholar 

  • Goncalves RCR, Pombeiro-Sponchiado SR (2005) Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull 28(6):1129–1131

    Article  CAS  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96(5):1076–1085. doi:10.1111/j.1365-2745.2008.01388.x

    Article  CAS  Google Scholar 

  • Jacobson ES, Tinnell SB (1993) Antioxidant function of fungal melanin. J Bacteriol 175(21):7102

    CAS  Google Scholar 

  • Jacobson ES, Hove E, Emery HS (1995) Antioxidant function of melanin in black fungi. Infect Immunity 63(12):4944

    CAS  Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse M (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166(2):639–653. doi:10.1111/j.1469-8137.2005.01364.x

    Article  CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes-are they mycorrhizal? Mycorrhiza 11(4):207–211. doi:10.1007/s005720100112

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root colonizing fungi. New Phytol 140(2):295–310. doi:10.1046/j.1469-8137.1998.00265.x

    Article  Google Scholar 

  • Khidir HH, Eudy DM, Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2010) A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J Arid Environ 74(1):35–42. doi:10.1016/j.jaridenv.2009.07.014

    Article  Google Scholar 

  • Kjøller R, Olsrud M, Michelsen A (2009) Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol 3(3):205–214. doi:10.1016/j.funeco.2009.10.005

    Article  Google Scholar 

  • Kogej T, Wheeler MH, Lanisnik Rizner T, Gunde-Cimerman N (2004) Evidence for 1, 8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232(2):203–209. doi:10.1016/S0378-1097(04)00073-4

    Article  CAS  Google Scholar 

  • Lanisnik RT, Wheeler MH (2003) Melanin biosynthesis in the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus). Can J Microbiol 49 (2):110. doi:10.1139/w03-016

  • Lee JK, Jung HM, Kim SY (2003) 1, 8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase. Appl Environ Microbiol 69 (6):3427. doi:10.1128/AEM.69.6.3427-3434.2003

    Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53 (1):173. doi:10.3114/sim.53.1.173

    Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2(1):10–20. doi:10.1016/j.funeco.2008.10.005

    Article  Google Scholar 

  • Nyaoke A, Weber ES, Innis C, Stremme D, Dowd C, Hinckley L, Gorton T, Wickes B, Sutton D, de Hoog S (2009) Disseminated phaeohyphomycosis in weedy seadragons (Phyllopteryx taeniolatus) and leafy seadragons (Phycodurus eques) caused by species of Exophiala, including a novel species. J Vet Diagn Invest 21(1):69

    Article  Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296(1):65–75. doi:10.1007/s11104-007-9290-9

    Article  CAS  Google Scholar 

  • Ravishankar JP, Muruganandam V, Suryanarayanan TS (1995) Isolation and characterization of melanin from a marine fungus. Botanica Marina 38(1–6):413–416. doi:10.1515/botm.1995.38.1-6.413

    Article  CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298 (5598):1581. doi:10.1126/science.1072191

    Google Scholar 

  • Robinson CH (2001) Cold adaptation in arctic and antarctic fungi. New Phytol 151(2):341–353. doi:10.1046/j.1469-8137.2001.00177.x

    Article  CAS  Google Scholar 

  • Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H (2000) Biosynthesis and functions of melanin in Sporothrix schenckii. Infec Immunity 68(6):3696

    Article  CAS  Google Scholar 

  • Ruotsalainen AL, Markkola A, Kozlov MV (2007) Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees. Environ Pollut 147(3):723–728. doi:10.1016/j.envpol.2006.09.004

    Article  CAS  Google Scholar 

  • Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRP, Schadt CW (2008) Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the andes and rocky mountains. Arct Antarct Alp Res 40(3):576–583. doi:10.1657/1523-0430(07-068)[SCHMIDT]2.0.CO;2

    Article  Google Scholar 

  • Selvakumar P, Rajasekar S, Periasamy K, Raaman N (2008) Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J Microbiol Biotechnol 24(10):2125–2131. doi:10.1007/s11274-008-9718-2

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Ravishankar JP, Venkatesan G, Murali TS (2004) Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol Res 108(8):974–978. doi:10.1017/S0953756204000619

    Article  CAS  Google Scholar 

  • Trappe JM (1962) Cenococcum graniforme–its distribution, ecology, mycorrhiza formation, and inherent variation. University of Washington, Seattle, USA. Ph.D.thesis

  • Tripathi P, Srivastava S (2007a) Development and characterization of nickel accumulating mutants of Aspergillus nidulans. Indian J Microbiol 47(3):241–250. doi:10.1007/s12088-007-0045-3

    Article  CAS  Google Scholar 

  • Tripathi P, Srivastava S (2007b) Mechanism to combat cobalt toxicity in cobalt resistant mutants of Aspergillus nidulans. Indian J Microbiol 47(4):336–344. doi:10.1007/s12088-007-0061-3

    Article  CAS  Google Scholar 

  • Tu YG, Sun YZ, Tian YG, Xie MY, Chen J (2009) Physicochemical characterisation and antioxidant activity of melanin from the muscles of taihe black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem 114(4):1345–1350. doi:10.1016/j.foodchem.2008.11.015

    Article  CAS  Google Scholar 

  • Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native antarctic vascular plant species. Fungal Ecol 2(4):184–196. doi:10.1016/j.funeco.2009.02.004

    Article  Google Scholar 

  • Wang Y, Casadevall A (1994) Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen-and oxygen-derived oxidants. Infec Immunity 62(7):3004

    CAS  Google Scholar 

  • Wu Y, Shan LJ, Yang SX, Ma AM (2008) Identification and antioxidant activity of melanin isolated from Hypoxylon archeri, a companion fungus of Tremella fuciformis. J Basic Microbol 48(3):217–221. doi:10.1002/jobm.200700366

    Article  CAS  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC, Kubicek CP (2010) Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbol 76(5):1642–1652. doi:10.1128/AEM.01911-09

    Article  CAS  Google Scholar 

  • Zhang YJ, Liu MJ, Shi XD, Zhao ZW (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46(6):624–632. doi:10.1007/s12275-008-0163-6

    Article  Google Scholar 

  • Zheng CN, Fang BS, Luo JX, Jin HW (2009) Extraction and physico-chemical proterties of the melanin produced by streptomyces G-HD-4. J Huaqiao Univ (Nat Sci) 30(3):292–296

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The National Natural Science Foundation of China (NSFC3770052, NSFC40763003) and Yunnan Education Bureau Program on Key Research Projects (Special Item 09Z0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, F., He, Y., Zu, Y. et al. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila . World J Microbiol Biotechnol 27, 2483–2489 (2011). https://doi.org/10.1007/s11274-011-0712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0712-8

Keywords

Navigation