Skip to main content
Log in

Production of tannase from wood-degrading fungus using as substrate plant residues: purification and characterization

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study Lenzites elegans, Schizophyllum commune, Ganoderma applanatum and Pycnoporus sanguineus (wood-degrading fungi) were assayed for their tannase producing potential in culture media containing plant residues or/and tannic acid as carbon source. Aspergillus niger was used as positive control for tannase production. We also carried out the isolation, purification and characterization of the enzyme from the fungi selected as the major productor. The highest fungal growth was observed in A. niger and L. elegans in the media containing tannic acid + glucose + plant residues (Fabiana densa). A. niger and L. elegans reached the highest extracellular tannase production in a medium containing tannic acid + F. densa and in a medium supplemented with glucose + tannic acid + F. densa. The produced enzyme by L. elegans was purified by DEAE-Sepharose. Km value was 5.5 mM and relative molecular mass was about 163,000. Tannase was stable at a pH range 3.0–6.0 and its optimum pH was 5.5. The enzyme showed an optimum temperature of 60°C and was stable between 40 and 60°C. This paper is the first communication of tannase production by wood-degrading fungi. Fermentation technology to produce tannase using plant residues and xylophagous fungi could be very important in order to take advantage of plant industrial waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar CN, Gutiérrez-Sánchez G (2001) Review: sources, properties, applications and potencial uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382

    CAS  Google Scholar 

  • Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan L, Ramírez-Coronel A, Contreras-Esquivel J (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    Article  CAS  Google Scholar 

  • Andrews P (1964) Estimation of molecular weights of proteins by sephadex gel filtration. Biochem J 91:222–233

    CAS  Google Scholar 

  • Aoki K, Shinke R, Nishira H (1976) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85

    Article  CAS  Google Scholar 

  • Banerjee D, Mondal KC (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus auleatus DBF 9. J Basic Microbiol 41:313–318

    Article  CAS  Google Scholar 

  • Banerjee R, Mukherjee G, Patra KCh (2005) Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresour Technol 96:949–953

    Article  CAS  Google Scholar 

  • Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40:1553–1557

    Article  CAS  Google Scholar 

  • Belmares R, Reyes-Vega ML, Contreras-Esquivel JC, Rodriguez-Herrera R, Aguilar N (2003) Effect of carbon source on tannase production by two strains of Aspergillus niger. Rev Mex Ing Quím 2:95–100

    Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodríguez-Herrera R, Ramírez Coronel A, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. LWT Food Sci Technol 37:857–864

    CAS  Google Scholar 

  • Bradoo S, Gupta R, Saxena RK (1996) Screening of extracellular tannase producing fungi: development of a rapid and simple plate assay. J Gen Appl Microbiol 42:325–329

    Article  CAS  Google Scholar 

  • Cabrera AL (1978) Flora de la Provincia de Jujuy. Colección Científica del INTA. Buenos Aires, Argentina. Parte X—Compositae

  • Coggon P, Graham NH, Sanderson GW (1975) UK Patent 1, 380, 135

  • Curiel JA, Betancor L, de las Rivas B, Muñoz R, Guisan JM, Fernández-Lorente G (2010) Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum. J Agric Food Chem 58:6403–6409

    Article  CAS  Google Scholar 

  • Deschamps AM (1989) Microbial degradation of tannins and related compounds. In: Lewis NG, Paice MG (eds) Plant cell wall polymers biogenesis and biodegradation. American Chemical Society, Washington, DC, pp 559–566

    Chapter  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Ribers P, Smith F (1956) Colorimetric methods for determination of sugar and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Hadi TA, Banerjee R, Bhattacharya BC (1994) Optimization of tannase biosynthesis by a newly isolated Rizopus oryzae. Bioprocess Eng 11:239–243

    Article  CAS  Google Scholar 

  • Hagerman AE, Rice ME, Ritchard NT (1998) Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4–8) catechin (procyanidin). J Agric Food Chem 46:2590–2595

    Article  CAS  Google Scholar 

  • Kumar R, Sing M (1984) Tannins: their adverse role in ruminant nutrition. J Agric Food Chem 32:447–453

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Leal DP, Isla MI, Vattuone MA, Sampietro AR (1994) Production of plant protoplasts by enzymes from selected wood-destroying fungi. Appl Microbiol Biotechnol 41:58–61

    Article  CAS  Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase; state of the art. Adv Appl Microbiol 44:215–260

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Lowry OH, Rosembrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Macedo GA, Matsuda LK, Battestin V (2005) Selezâo de fungos productores de tanase em residuos vegetais ricos em taninos. Ciência e Agrotecnologia 29:833–838

    Article  CAS  Google Scholar 

  • Mukharjee G, Banerjee R (2003) Production of gallic acid: biotechnological routes (Part 1). Chim Oggi 21:59–62

    Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Porter L, Hrstich L, Chan B (1986) The conversion of procyanidins and prodelphinidins to cyanidin and del-phinidin. Phytochem 25:223–230

    Article  CAS  Google Scholar 

  • Pourrat H, Regerat F, Pourrat A, Daniel J (1985) Production of gallic acid from tara by a strain of Aspergillus niger. J Ferment Technol 63:401–403

    CAS  Google Scholar 

  • Rajakumar GS, Nandy SC (1983) Isolation, purification and some properties of Penicillum chrysogenum tannase. Appl Environ Microbiol 46:525–527

    CAS  Google Scholar 

  • Sabu A, Kiran GS, Pandey A (2005) Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technol Biotech 43:133–138

    CAS  Google Scholar 

  • Salunkhe DK, Chavan JK, Kadam SS (1989) Dietary tannins: consequences and remedies. CRC Press, Boca Raton

    Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodanine. Anal Biochem 279:85–89

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteau reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Somogyi NA (1945) A new reagent for the determination of sugar. J Biol Chem 160:61–63

    CAS  Google Scholar 

  • Treviño-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN (2007) Gallic acid and tannase accumulation during fungal solid state cultura of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresour Technol 98:721–724

    Article  Google Scholar 

  • Weetall HH (1985) Enzymatic gallic acid esterification. Biotechnol Bioeng 28:124–127

    Article  Google Scholar 

  • Zampini IC, Cuello S, Alberto MR, Ordoñez RM, D’ Almeida R, Solorzano E, Isla MI (2009) Antimicrobial activity of selected plant species from “the Argentine Puna” against sensitive and multi-resistant bacteria. J Ethnopharmacol 124:499–505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the cooperation from the inhabitants of the areas of study and the financial support from Consejo de Investigación de la Universidad Nacional de Tucumán (CIUNT), Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Isla.

Additional information

R. M. Ordoñez and M. I. Isla have equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordoñez, R.M., Colombo, I., Alberto, M.R. et al. Production of tannase from wood-degrading fungus using as substrate plant residues: purification and characterization. World J Microbiol Biotechnol 27, 2325–2333 (2011). https://doi.org/10.1007/s11274-011-0699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0699-1

Keywords

Navigation