Skip to main content
Log in

Optimization of production conditions, isolation, purification, and characterization of tannase from filamentous fungi

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Tannase-producing filamentous fungi residing alongside tannin-rich ambient in the Northwest Himalayas were isolated at laboratory conditions and further identified by 18S ribosomal RNA gene sequencing. Five most potent tannase producing strains (EI ≥ 2.0), designated Aspergillus fumigatus AN1, Fusarium redolens AN2, Penicillium crustosum AN3, Penicillium restrictum AN4, and Penicillium commune AN5, were characterized. The strain Penicillium crustosum AN3 exhibited a maximum zone dia (25.66 mm ± 0.38). During solid-state fermentation, a maximal amount of tannase was attained with Penicillium crustosum AN3 using pine needles (substrate) by adopting response surface methodology for culture parameter optimization. Gel filtration chromatography yielded 46.48% of the partially purified enzyme with 3.94-fold of tannase purification. We found two subunits in enzyme-117.76 KDa and 88.51 KDa, respectively, in the SDS-PAGE. Furthermore, the characterization of partially purified tannase revealed a maximum enzyme activity of 8.36 U/mL at 30 °C using a substrate concentration (methyl gallate) of 10 mM. To broaden the knowledge of crude enzyme application, dye degradation studies were subjected to extracellular crude tannase from Penicillium crustosum AN3 where the maximum degradation achieved at a low enzyme concentration (5 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the paper and its supporting information files as separate attachments (SA).

Abbreviations

NCBI:

National Center for Biotechnology Information

NAIMCC:

National Agriculturally Important Microbial Culture Collection

NBAIM:

National Bureau of Agriculturally Important Microorganisms

IMTECH:

Institute of Microbial Technology

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

References

  • Aguilar CN, Augur C, Favela Torres E, Viniegra Gonzalez G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    Article  CAS  PubMed  Google Scholar 

  • Aguilar CN, Rodriguez R, Gutierrez SG, Augur C, Favela TE, Prado BLA, Ramirez CA, Contreras EJC (2007) Microbial tannases: advances and perspectives. App Microbiol Biotechnol 76:47–59

    Article  CAS  Google Scholar 

  • Aissam H, Errachidi F, Penninckx MJ, Merzouki M, Benlemlih M (2005) Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste waters. World J Microbiol Biotechnol 21:609–614

    Article  CAS  Google Scholar 

  • Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zhang Z, Webb M, David JL (1990) Gaped BLAST and PSIBLAST: a new generation of protein database search program. Nuc Acid Res 25:3389–3402

    Article  Google Scholar 

  • Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40(5):1553–1557

    Article  CAS  Google Scholar 

  • Battestin V, Macedo GA (2007) Partial purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnol 21:207–216

    Article  CAS  Google Scholar 

  • Beena PS, Soorej MB, Elyas KK, Sarita GB, Chandrasekaran M (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Belmares R, Contreras EJC, Rodriguez HR, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Food Science and Technology 37:857–864

    CAS  Google Scholar 

  • Belur PD, Mugeraya G (2011) Microbial production of tannase: state of the art. Res J Microbiol 6(1):25–40

    Article  CAS  Google Scholar 

  • Beniwal et al (2013) Production of tannase through solid state fermentation using Indian Rosewood (Dalbergia sissoo) sawdust—a timber industry waste. Ann Microbiol 63:583–590

    Article  CAS  Google Scholar 

  • Beverini M, Metche M (1990) Identification, purification and physiochemical properties of tannase of Aspergillus oryzae. Sci Des Aliments 10:807–816

    CAS  Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimal conditions. J Roy Stat 13:1–45

    Google Scholar 

  • Bradoo S, Gupta R, Saxena R (1996) Screening of extracellular tannase-producing fungi: development of a rapid simple plate assay. J Gen App Microbiol 42:325–329

    Article  CAS  Google Scholar 

  • Chávez-González M, Rodríguez-Durán LV, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras JC, Aguilar CN (2012) Biotechnological advances and challenges of tannase: an overview. Food and Bioprocess Technol 5:445–459

    Article  Google Scholar 

  • Coman G, Bahrim G (2011) Optimization of xylanase production by streptomyces sp. using response surface methodology and central composite design. Ann Microbiol 61:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM (2008) Production of tannase by Aspergillus tamarii in submerged cultures. Braz Arch Biol Technol 51(2):399–404

    Article  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis–II method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Article  CAS  PubMed  Google Scholar 

  • de Melo AG, Souza da Costa PN, Maia da Costa N, Thomas AB, da Silva LBR, Batista LR, Ferreira RL, Cardoso PG (2013) Screening and identification of tannase-producing fungi isolated from Brazilian caves. African J Microbiol Res 7:483–487

    Google Scholar 

  • Deschamps AM, Otuk G, Lebeault JM (1983) Production of tannase and degradation of chestnut tannin by bacteria. J Fermentation Technol 61:55–59

    CAS  Google Scholar 

  • Dhiman S, Mukherjee G, Kumar A, Majumdar RS (2021) Enhanced production of tannase through RSM by Bacillus haynesii SSRY4 MN031245 under submerged fermentation. J Sci Ind Res 80:675–680

    CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Gaikaiwari RP, Wagh SA, Kulkarni BD (2012) Extraction and purification of tannase by reverse micelle system. Sep Purif Technol 89:288–296

    Article  CAS  Google Scholar 

  • Gayen S, Ghosh U (2013) Purification and characterization of tannase produced by mixed solid-state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923. Biomed Res Int:1–6

  • Gopi K, Jayaprakashvel M (2017) Dye degrading potential of laccase and tannase from endophytic fungi. Res J Pharm Technol 10(11):4108–4110

    Article  Google Scholar 

  • Hamada A, Abou Bakr Malak A, El Sahn Amr A, El Banna (2013) Screening of tannase-producing fungi isolated from tannin-rich sources. Int J Agric Food Res 2:1–12

    Google Scholar 

  • Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 67:597–607

    Article  Google Scholar 

  • Hankin L, Zucker M, Sands DC (1971) Improved solid medium for the detection and enumeration of pectolytic bacteria. App Microbiol 22:205–209

    Article  CAS  Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175(1–2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Ire F, Nwanguma A (2020) Comparative evaluation on tannase production by Lasiodiplodia plurivora ACN-10 under submerged fermentation (SmF) and solid-state fermentation (SSF). Asian J Biotechnol Bioresour Technol 6(1):39–49

    Article  Google Scholar 

  • Jana A, Maity C, Halder SK, Mondal KC, Pati BR, Mohapatra PKD (2013) Enhanced tannase production by Bacillus subtilis PAB2 with concomitant antioxidant production. Biocatal Agric Biotechnol 2:363–371

    Article  Google Scholar 

  • Jana A, Halder SK, Baneerjee A, Paul T, Pati BR, Mondal K, Mohapatra, PKD (2014) Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Bioresour Technol 157:327–340

  • Joshi S, Basalingappa K, Prasad N (2020) Isolation and screening of tannase producing fungi. Int J Inn Biochem Sci 13:104–108

    CAS  Google Scholar 

  • Kachouri S, Halouli S, Lomascolo A, Asther M, Hamadi M (2005) Decolorization of black oxidized olive – mill wastewater by a new tannase-producing Aspergillus flavus strain isolated from soil. World J Microbiol Biotechnol 21:1465–1470

    Article  CAS  Google Scholar 

  • Kamal IM, Abdeltawab NF, Ragab YM, Farag MA, Ramadan MA (2022) Biodegradation, decolorization, and detoxification of di-azo dye direct red 81 by halotolerant, alkali-thermo-tolerant bacterial mixed cultures. Microorganisms 10(5):994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasieczka-Burnecka M, Kuc K, Kalinowska K, Turkiewicz M (2007) Purification and characterization of two cold adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp P9. App Microbiol Biotechnol 77:77–89

    Article  CAS  Google Scholar 

  • Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Rana S, Beniwal V, Salar RK (2015) Optimization of tannase production by a novel Klebsiella pneumonia KP715242 using central composite designs. Biotechnol Rep 7:128–134

    Article  Google Scholar 

  • Laemmlli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lal D, Gardner JJ (2012) Production characterization and purification of tannase from Aspergillus niger. Euro J Exp Biol 2(5):1430–1438

    CAS  Google Scholar 

  • Lekha PK, Lonsane BK (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid state, liquid surface and submerged fermentations. Process Biochem 29:497–503

    Article  CAS  Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acylhydrolase: state of the art. Adv App Microbiol 44:215–260

    Article  CAS  Google Scholar 

  • Lekshmi et al (2020) Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid-state fermentation. J King Saud Univ Sci 32:1831–1837

    Article  Google Scholar 

  • Lekshmi R, Arif Nisha S, Thirumalai Vasan P, Kaleeswaran B (2021) A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environ Res 201:111625

    Article  CAS  PubMed  Google Scholar 

  • Madhavakrishna W, Bose SM, Nayudamma Y (1960) Estimation of tannase and certain oxidizing enzymes Indian vegetables tanstuffs. Bull Cent Leather Res Inst 7:1–11

    CAS  Google Scholar 

  • Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Purification characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem 40:3251–3254

    Article  CAS  Google Scholar 

  • Mukherjee G, Banerjee R (2004) Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus. J Basic Microbiol 44:42–48

    Article  CAS  PubMed  Google Scholar 

  • Naidu RB, Saisubramanian N, Sivasubramanian S, Selvakumar D, Janardhanan S, Puvanakrishnan R (2008) Optimization of tannase production from Aspergillus foetidus using by statistical design methods. Curr T Biotechnol Pharm 2:523–530

    CAS  Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadimel K (2008) Optimization of fermentation condition for production of tannase enzyme by Aspergillus oryzae using sugarcane bagasse and rice rice straw. Global J Biotechnol Biochem 3(2):105–110

    Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Alagusundaram K (2009) Production of tannase from flues milling by products using solid state fermentation. Acad J Plant Sci 2(3):124–127

    Google Scholar 

  • Paranthaman R, Murgesh S, Singharavadivel K (2010) Bioprocessing of paddy straw for the production and purification of gallic acid using Penicillium chrysogenum. Electro J Environ Agric Food Chem 9(9):14

    Google Scholar 

  • Philip DC, Lavanya B, Latha S (2015) Purification of tannase from Aspergillus niger under solid-state fermentation. World J Pharm Pharm Sci 4:993–1001

    Google Scholar 

  • Pinto GAS, Laaite SGF, Terzi SC, Couri S (2001) Selection of tannase-producing Aspergillus niger strains. Brazilian J Microbiol 32:24–26

    Article  CAS  Google Scholar 

  • Raaman N, Mahendran B, Jaganathan C, Sukumar S, Chandrasekaran V (2010) Optimization of extracellular tannase production from Paecilomyces variotii. World J Microbiol Biotechnol 26:1033–1039

    Article  CAS  Google Scholar 

  • Raghuwanshi S, Dutt K, Gupta P, Misra S, Saxena RK (2011) Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis. J Biosci Bioeng 111:635–640

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Coronel MA, Viniegra GG, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with beta-glucosidase activity. Microbiol 149:2941–2946

    Article  CAS  Google Scholar 

  • Rodríguez-Durán LV, Contreras-Esquivel JC, Rodríguez R, Prado-Barragán A, Aguilar CN (2011) Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor. J Microbiol Biotechnol 21:960–967

    Article  PubMed  Google Scholar 

  • Rout S, Banerjee R (2006) Production of tannase under mSSF and its application in fruit juice debittering. Indian J Biotechnol 5:346–350

    CAS  Google Scholar 

  • Sabu A, Pandey A, Daud MJ, Szakac C (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for production of tannase under solid state fermentation by Aspergillus niger ATCC16620. Bioresour Technol 96:1223–1228

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodanine. Ann Biochem 278:85–89

    Article  Google Scholar 

  • Sivashanmugam K, Jayaraman G (2011) Production and partial purification of extra-cellular tannase by Klebsiella pneumoniae MTCC 7162 isolated from tannery effluent. African J Biotechnol 10:1364–1374

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Bio Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Thakur N, Nath AK (2016) Possible applications of tannase from Penicillium crustosum AN 3. J Env Bio-Sci 30(1):519–522

    Google Scholar 

  • Thakur N, Nath AK (2017a) Detection and production of gallic acid from novel fungal strain- Penicillium crustosum AN3 KJ820682. Curr T Biotechnol Pharm 11(1):60–66

    CAS  Google Scholar 

  • Thakur N, Nath AK (2017b) Isolation of tannase-producing bacteria from small ruminants. Indian J Small Rumin 23(2):264–266

    Article  Google Scholar 

  • Wang D, Xu Y, Shan T (2008) Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochem Eng J 41(1):30–37

    Article  Google Scholar 

  • Yamada H, Adachi O, Watanabe M, Sato N (1968) Studies on fungal tannase. part I: formation, purification and catalytic properties of tannase of Aspergillus flavus. Agric Biol Chem 32:1070–1078

    CAS  Google Scholar 

  • Zarate PA, Hernandez MAC, Montanez JC, Cerada REB, Aguilar CN (2014) Bacterial tannases: production, properties and applications. Rev Mex Ing Quim 13(1):63–74

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the late Dr. V.K. Joshi, Department of Food Technology, Dr. YSPUHF Nauni (H.P), India, for providing statistical software for data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Thakur.

Ethics declarations

Ethics approval

All the authors declare this is their original work, which has not been previously published elsewhere even currently not being considered for publication elsewhere. Also, this research analysis has been done truthfully and completely. There is no involvement of any animals/animal part in the current article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 196 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, N., Nath, A. & Sharma, A. Optimization of production conditions, isolation, purification, and characterization of tannase from filamentous fungi. Folia Microbiol (2024). https://doi.org/10.1007/s12223-024-01154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12223-024-01154-3

Keywords

Navigation