Skip to main content

Advertisement

Log in

Effect of water level and salinity on the growth of Annona glabra L. seedlings

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

During the last century the mean sea level has been increasing at a rate of 0.2–0.4 mm·year−1, and that rate is expected to accelerate during this century. Coastal wetland ecosystems are sensitive to the potential changes and impacts resulting from a rise in sea level. In the coastal region of the Gulf of Mexico, freshwater swamps are wetlands located further inland than mangroves, and while influenced by the tides, maintain freshwater conditions. Due to their location, the rise in sea level could increase the levels of flooding and salinity in these ecosystems. The objective of this study was to evaluate, under greenhouse conditions, the effect of nine flood and salinity treatments on the survival, growth, and increase in the biomass of Annona glabra (pond apple) seedlings (average height: 18.6 ± 1.61 cm). The treatments combined two factors: water level (Saturation, Flood, Flood-Drought) and salinity (0, 5 and 15‰). Seedling survival was greater under freshwater conditions. Increases in height and diameter, and leaf and biomass gain, were more significant under saturation and freshwater conditions. Based on our results, we conclude increased flood levels and salinity will negatively affect the natural establishment of A. glabra seedlings in freshwater swamps under a scenario of rising sea level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Allen JA, Chambers JL, McKinney D (1994) Intraspecific variation in the response of Taxodium distichum seedlings to salinity. For Ecol Manage 70:203–214. https://doi.org/10.1016/0378-1127(94)90087-6

    Article  Google Scholar 

  • Allen JA, Chamber JL, Pezeshki SR (1997) Effect of salinity on baldcypress seedlings: physiological responses and their relation to salinity tolerance. Wetlands 17:310–320. https://doi.org/10.1007/BF03161419

    Article  Google Scholar 

  • An S, Verhoeven JTA (2019) Wetland functions and ecosystem services: implications for wetland restoration and wise use. In: An S, Verhoeven JTA (eds) Wetlands: ecosystem services, restoration and wise use. Ecological studies (Analysis and Synthesis). Springer, Cham, pp 1–10

    Chapter  Google Scholar 

  • Bolker BM (2015) Linear and generalized linear mixed models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics: contemporary theory and application. Oxford University Press, Oxford, pp 309–333

    Chapter  Google Scholar 

  • Bompy F, Imbert D, Dulormne M (2015) Impact patterns of soil salinity variations on the survival rate, growth performances, and physiology of Pterocarpus officinalis seedlings. Trees 29:119–128. https://doi.org/10.1007/s00468-014-1096-9

    Article  CAS  Google Scholar 

  • Campos A, Hernández ME, Moreno-Casasola P, Espinosa EC, Robledo AR, Infante-Mata D (2011) Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol Sci J 56:1388–1406. https://doi.org/10.1080/02626667.2011.629786

    Article  CAS  Google Scholar 

  • Conner WH (1994) The effect of salinity and waterlogging on growth and survival of Baldcypress and Chinese tallow seedlings. J Coast Res 10:1045–1049

    Google Scholar 

  • Conner WH, Inabinette LW (2005) Identification of salt tolerant baldcypress (Taxodium distichum (L.) Rich) for planting in coastal areas. New For 29:305–312. https://doi.org/10.1007/s11056-005-5658-y

  • Conner WH, McLeod KW, McCarron JK (1997) Flooding and salinity effects on growth and survival of four commonn forested wetland species. Wetl Ecol Manag 5:99–109. https://doi.org/10.1023/A:1008251127131

    Article  Google Scholar 

  • Conner WH, McLeod KW, McCarron JK (1998) Survival and growth of seedlings of four bottomland oak species in response to increases in flooding and salinity. For Sci 44:618–624. https://doi.org/10.1093/forestscience/44.4.618

    Article  Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Cronk JK, Fennesy MS (2001) Wetland plants: biology and ecology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Day JW, Christian RR, Boesch DM, Yáñez-Arancibia A, Morris J, Twilley RR, Naylor L, Schaffner L, Stevenson C (2008) Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries Coasts 31:477–491. https://doi.org/10.1007/s12237-008-9047-6

    Article  Google Scholar 

  • Doody JP (2013) Coastal squeeze and managed realignment in Southeast England, does it tell us anything about the future? Ocean Coast Manag 79:34–41. https://doi.org/10.1016/j.ocecoaman.2012.05.008

    Article  Google Scholar 

  • Duberstein JA, Krauss KW, Baldwin MJ, Allen ST, Conner WH, Salter JS Jr, Miloshis M (2020) Small gradients in salinity have large effects on stand water use in freshwater wetland forests. For Ecol Manage 473:118308. https://doi.org/10.1016/j.foreco.2020.118308

    Article  Google Scholar 

  • Flores-Verdugo F, Moreno-Casasola P, Agraz-Hernández CL, López-Rosas HL, Benítez-Pardo D, Travieso-Bello AC (2007) Topography and hydroperiod: two factors affecting coastal wetland restoration. Bol Soc Bot México 80:33–47. https://doi.org/10.17129/botsci.1755

  • González-Marín RM, Lazos-Ruíz AE, Escamilla-Pérez BE, Juárez Eusebio A, Moreno-Casasola P (2016) El aprovisionamiento. In: Moreno-Casasola P (ed) Servicios Ecosistémicos de Las Selvas y Bosques Costeros de Veracruz. Inecol A.C., ITTO, Conafor, INECC, Xalapa, pp 160–184

    Google Scholar 

  • Grieger R, Capon S, Hadwen W (2019) Resilience of coastal freshwater wetland vegetation of subtropical Australia to rising sea levels and altered hydrology. Reg Environ Chang 19:279–292. https://doi.org/10.1007/s10113-018-1399-2

    Article  Google Scholar 

  • Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardon M, Hopfensperger KN, Lamers LPM, Gell P, Langley JA (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6:1–43. https://doi.org/10.1890/ES14-00534.1

    Article  Google Scholar 

  • Hoeppner SS, Rose KA (2011) Individual-based modeling of flooding and salinity effects on a coastal swamp forest. Ecol Modell 222:3541–3558. https://doi.org/10.1016/j.ecolmodel.2011.07.017

    Article  CAS  Google Scholar 

  • Infante-Mata D (2011) Estructura y dinámica de las selvas inundables de la planicie costera central del Golfo de México. PhD Thesis. Instituto de Ecología, A.C. Xalapa, Méxco. pp 197

  • Infante-Mata D, Moreno-Casasola P (2005) Effect of in situ storage, light, and moisture on the germination of two wetland tropical trees. Aquat Bot 83:206–218. https://doi.org/10.1016/j.aquabot.2005.06.009

    Article  Google Scholar 

  • Infante-Mata D, Moreno-Casasola P, Madero-Vega C, Castillo-Campos G, Warner BG (2011) Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico. For Ecol Manage 262:1514–1531. https://doi.org/10.1016/j.foreco.2011.06.053

    Article  Google Scholar 

  • Infante-Mata D, Moreno-Casasola P, Madero-Vega C (2014) ¿Pachira aquatica, un indicador del límite del manglar? Rev Mex Biodivers 85:143–160. https://doi.org/10.7550/rmb.32656

    Article  Google Scholar 

  • Infante-Mata D, Moreno-Casasola P, Valverde T, Maza-Villalobos S (2019) Effects of soil flooding, sunlight and herbivory on seedlings of Annona glabra and Pachira aquatica in a tropical swamp. Wetl Ecol Manag 27:539–551. https://doi.org/10.1007/s11273-019-09676-1

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental panel on climate change. Geneva, Switzerland

  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167. https://doi.org/10.1007/s00027-012-0278-z

    Article  CAS  Google Scholar 

  • Lara-Lara JR, Arreola-Lizárraga JA, Calderón-Aguilera LE, Camacho-Ibar VF, de la Lanza-Espino G, Escofet-Giansone A, Espejel-Carbajal I, Guzmán-Arroyo M, Ladah LB, López-Hernández M, Meling-López EA, Moreno-Casasola Barceló P, Reyes-Bonilla H, Ríos-Jara E, Zertuche-González JA (2008) Los ecosistemas costeros, insulares y epicontinentales. In: Soberón J, Halfter G, Llorente-Bousquets J (Eds), Capital Natural de México. Vol. 1.: Conocimiento Actual de La Biodiversidad. CONABIO, México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D.F., pp 109–134

  • López-Rosas H, Espejel-González VE, Moreno-Casasola P (2021) Variaciones espacio-temporales del nivel y salinidad del agua afectan la composición de especies del manglar-tular. Ecosis Recur Agropec 8:1–21

  • Marín-Muñiz JL, Hernández ME, Moreno-Casasola P (2014) Comparing soil carbon sequestration in coastal freshwater wetlands with various geomorphic features and plant communities in Veracruz, Mexico. Plant Soil 378:189–203. https://doi.org/10.1007/s11104-013-2011-7

    Article  CAS  Google Scholar 

  • McCarron JK, McLeod KW, Conner WH (1998) Flood and salinity stress of wetland woody species, buttonbush (Cephalanthus occidentalis) and swamp tupelo (Nyssa sylvatica var. biflora). Wetlands 18:165–175. https://doi.org/10.1007/BF03161653

    Article  Google Scholar 

  • Middleton BA (2009) Regeneration potential of Taxodium distichum swamps and climate change. Plant Ecol 202:257–274. https://doi.org/10.1007/s11258-008-9480-4

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, Hoboken

    Google Scholar 

  • Moreno-Casasola P, Infante-Mata D (2010) Veracruz. Tierra de ciénagas y pantanos. Gobierno del Estado de Veracruz para la Conmemoración de la Independencia Nacional y de la Revolución Mexicana-Universidad Veracruzana, Xalapa, Veracruz. pp 411

  • Moreno-Casasola P, Infante-Mata D, López-Rosas H (2012) Tropical freshwater swamps and marshes. In: Batzer DP, Baldwin AH (eds) Wetlands habitats of North America: ecology and conservation concerns. University of California Press, California, pp 267–282

    Google Scholar 

  • Moreno-Casasola P, Aguirre-Franco L, Campos-Cascaredo A, Carral-Murrieta CO, Cejudo E, González-Marín RM, González-Nochebuena M, Hernández ME, Infante-Mata D, Lazos-Ruíz A, López-Rosas H, Monroy R, Neri-Flores I, Peralta-Peláez LA, Rodríguez-Medina K, Sánchez-Higueredo L, Sánchez-García EA, Sánchez-Luna O, Vázquez-González C, Vázquez-Benavides J (2020) Humedales costeros de agua dulce y bases para su gobernanza. In: Rivera-Arriaga E, Azuz-Adeath I, Cervantes-Rosas OD, Espinoza-Tenorio A, Silva-Casarín R, Ortega-Rubio A, Botello AV, Vega-Serratos B (eds) Gobernanza y Manejo de Las Costas y Mares Ante La Incertidumbre. Universidad Autónoma de Campeche, RICOMAR, Una Guía Para Tomadores de Decisiones, pp 617–648

    Google Scholar 

  • Moreno-Casasola P, Infante-Mata D (2016) Conociendo los manglares, las selvas inundables y humedales herbáceos. Instituto de Ecología, A.C., ITTO, CONAFOR, Xalapa, Veracruz. pp 130

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. https://doi.org/10.1126/science.1185782

    Article  CAS  PubMed  Google Scholar 

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Chang 9:S69–S87. https://doi.org/10.1016/S0959-3780(99)00019-9

    Article  Google Scholar 

  • Nielsen DL, Brock MA (2009) Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Clim Change 95:523–533. https://doi.org/10.1007/s10584-009-9564-8

    Article  CAS  Google Scholar 

  • Niembro-Rocas A, Vázquez-Torres M, Sánchez-Sánchez O (2010) Árboles de Veracruz. 100 especies para la reforestación estratégica. Gobierno del Estado de Veracruz, Secretaría de Educación del Estado de Veracruz, Comisión del Estado de Veracruz de Ignacio de la Llave para la conmemoración de la Independencia Nacional y la Revolución, Centro de Investigaciones Tropicales, Xalapa. pp 255

  • Oliveira VC, Joly CA (2010) Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees 24:185–193. https://doi.org/10.1007/s00468-009-0392-2

    Article  Google Scholar 

  • Ortíz-Pérez MA, Méndez-Linares AP (1999) Escenarios de vulnerabilidad por ascenso del nivel del mar en la costa mexicana del Golfo de México y el Mar Caribe. Investig Geogr. https://doi.org/10.14350/rig.59084

  • Parris A, Bromirski P, Burkett V, Cayan D, Culver M, Hall J, Horton R, Knuuti K, Moss R, Obeysekera J, Sallenger A, Weiss J (2012) Global sea level rise scenarios for the United States National Climate Assessment. NOAA Tech Memo OAR CPO-01, NOAA Technical Report OAR CPO-01. Silver Spring, MD

  • Pezeshki SR (1990) A comparative study of the response of Taxodium distichum and Nyssa aquatica seedlings to soil anaerobiosis and salinity. For Ecol Manage 33(34):531–541. https://doi.org/10.1016/0378-1127(90)90216-X

    Article  Google Scholar 

  • Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312. https://doi.org/10.1016/S0098-8472(01)00107-1

    Article  Google Scholar 

  • Pezeshki SR, Patrick WH, DeLaune RD, Moser ED (1989) Effects of waterlogging and salinity interaction on Nyssa aquatica seedlings. For Ecol Manage 27:41–51. https://doi.org/10.1016/0378-1127(89)90081-9

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Misex-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Rivera-Ocasio E, Aide TM, Rios-López N (2007) The effects of salinity on the dynamics of a Pterocarpus officinalis forest stand in Puerto Rico. J Trop Ecol 23:559–568. https://doi.org/10.1017/S0266467407004361

    Article  Google Scholar 

  • Salter J, Morris K, Bailey PCE, Boon PI (2007) Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm. (Swamp paperbark) seedlings. Aquat Bot 86:213–222. https://doi.org/10.1016/j.aquabot.2006.10.002

    Article  Google Scholar 

  • Sánchez-García EA (2020) Germinación y crecimiento de Annona glabra L. bajo condiciones experimentales como base para la restauración de un humedal arbóreo en la zona costera del centro de Veracruz. Master’s Thesis. Instituto de Ecología, A.C. Xalapa, México. pp 100

  • Sánchez-Higueredo LE, Ramos-Leal JA, Morán-Ramírez J, Moreno-Casasola P, Rodríguez-Robles U, Hernández ME (2020) Ecohydrogeochemical functioning of coastal freshwater herbaceous wetlands in the Protected Natural Area, Ciénaga del Fuerte (American tropics): spatiotemporal behaviour. Ecohydrology 13:1–13. https://doi.org/10.1002/eco.2173

    Article  CAS  Google Scholar 

  • Setter SD, Setter MJ, Campbell SD (2004) Longevity of pond apple (Annona glabra L.) seed and implications for management. In: Fourteenth Australian Weeds Conference. pp 551–554. Wagga Wagga, New South Wales, Australia

  • Shanungu GK (2009) Management of the invasive Mimosa pigra L. in Lochinvar National Park, Zambia. Biodiversity 10:56–60. https://doi.org/10.1080/14888386.2009.9712844

    Article  Google Scholar 

  • Sjögersten S, de la Barreda-Bautista B, Brown C, Boyd D, Lopez-Rosas H, Hernández E, Monroy R, Rincón M, Vane C, Moss-Hayes V, Gallardo-Cruz JA, Infante-Mata D, Hoyos-Santillan J, Vidal Solórzano J, Peralta-Carreta C, Moreno-Casasola P (2021) Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403:1–14. https://doi.org/10.1016/j.geoderma.2021.115173

    Article  CAS  Google Scholar 

  • Team R Core R.F. for S.C (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Vázquez-González C, Moreno-Casasola P, Espejel I, Escamilla-Pérez BE, Díaz de León S, Peralta-Peláez LA (2016) Valor económico de los ecosistemas. In: Moreno-Casasola P (ed) Servicios Ecosistémicos de Las Selvas y Bosques Costeros de Veracruz. Inecol A.C., ITTO, Conafor, INECC, Xalapa, pp 186–203

    Google Scholar 

  • Wieski K, Guo H, Craft CB, Pennings SC (2010) Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast. Estuaries Coasts 33:161–169. https://doi.org/10.1007/s12237-009-9230-4

    Article  CAS  Google Scholar 

  • Xian X, Pang M, Zhang J, Zhu M, Kong F, Xi M (2019) Assessing the effect of potential water and salt intrusion on coastal wetland soil quality: simulation study. J Soils Sediments 19:2251–2264. https://doi.org/10.1007/s11368-018-02225-y

    Article  CAS  Google Scholar 

  • Yáñez-Arancibia A, Day JW, Willey RR, Day RH (2010) Los manglares frente al Cambio Climático ¿Tropicalización global del Golfo de México?, In: Yañez-Arancibia A (Ed), Impactos Del Cambio Climático Sobre La Zona Costera. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Instituto de Ecología, AC., Texas Sea Grant Program, México, pp 91–126

  • Yetter J (2004) Hydrology and geochemistry of freshwater wetlands on the Gulf coast of Veracruz, Mexico. Masther’s Thesis. University Waterloo. Ontario, Canada. pp 168

Download references

Acknowledgements

We thank Máximo Azua, Boni Azua and Luis Miguel Rodríguez for their support in the field and in setting up the experiment, and Roberto Monroy for his support in preparing the map. Patricia Moreno-Casasola translated the manuscript from the original in Spanish. Bianca Delfosse edited the final version. The authors express their gratitude to the reviewers and editor who revised the manuscript and whose comments and suggestions helped improve it.

Funding

This study was funded by the Consejo Nacional de Ciencia y Tecnología (Scholarship No. 723842 granted to the first author), DIADA SA de CV and the Instituto de Ecología A.C. (INECOL). We also thank the Centro de Investigaciones Costeras La Mancha for providing the space and resources needed to carry out the study.

Author information

Authors and Affiliations

Authors

Contributions

EASG, HLR, PMC, and RLC: Conceived the idea and designed the experiment. EASG: Carried out the greenhouse work and the performed data collection. EASG and VJS: Performed the analyses. EASG: Wrote the first version of the manuscript. All authors contributed to the discussion, review, and approval of the final manuscript.

Corresponding author

Correspondence to Patricia Moreno-Casasola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors consent for the manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-García, E.A., López-Rosas, H., Sosa, V.J. et al. Effect of water level and salinity on the growth of Annona glabra L. seedlings. Wetlands Ecol Manage 30, 579–593 (2022). https://doi.org/10.1007/s11273-022-09884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-022-09884-2

Keywords

Navigation