Skip to main content

Advertisement

Log in

Comparing soil carbon sequestration in coastal freshwater wetlands with various geomorphic features and plant communities in Veracruz, Mexico

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg−1 in the marshes and 50 to 225 gC kg−1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P = 0.095) were found (estuarine (25.50 ± 2.26 kgC m−2), perilacustrine (28.33 ± 2.74 kgC m−2) and depressional wetlands (34.93 ± 4.56 kgC m−2)). However, the carbon stock was significantly higher (P = 0.030) in the swamps (34.96 ± 1.3 kgC m−2) than in the marshes (25.85 ± 1.19 kgC m−2). The average sediment accretion rates were 1.55 ± 0.09 cm yr−1 in the swamps and 0.84 ± 0.02 cm yr−1 in the marshes with significant differences (P = 0.040). The rate of carbon sequestration was higher (P = 0.001) in swamp soils (0.92 ± 0.12 kgC m−2 yr−1) than marsh soils (0.31 ± 0.08 kgC m−2 yr−1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P < 0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P < 0.05). However, no significant differences (P = 0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adame M, Kauffman J, Medina I, Gamboa J, Torres O, Caamal J, Reza M, Herrera-Silveira J (2013) Carbon stock of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PloS ONE 8:e56569. doi:10.1371/journal.pone.0056569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Adhikari S, Bajracharaya R, Sitaula B (2009) A review of carbon dynamics and sequestration in wetlands. J Wetl Ecol 2:42–46

    CAS  Google Scholar 

  • Benner R, Maccubbin A, Hodson R (1984) Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl Environ Microb 47:998–1004

    CAS  Google Scholar 

  • Bernal B, Mitsch WJ (2008) A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol Eng 34:311–323

    Article  Google Scholar 

  • Bernal B, Mitsch WJ (2012) Comparing carbon sequestration in temperate freshwater wetland communities. Global Change Biol 18:1636–1647

    Article  Google Scholar 

  • Bernal B, Mitsch WJ (2013) Carbon sequestration in freshwater wetlands in Costa Rica and Botswana. Biogeochemistry. doi:10.1007/s10533-012-9819-8

    Google Scholar 

  • Bernard JM, Solsky BA (1977) Nutrient cycling in a Carex lacustris wetland. Can J Bot 55:630–638

    Article  CAS  Google Scholar 

  • Bernard JM, Solander D, Kvet J (1988) Production and nutrient dynamics in Carex wetlands. Aquat Bot 30:125–147

    Article  Google Scholar 

  • Brevik E, Homburg J (2004) A 500 year record of carbon sequestration from a coastal lagoon and wetland complex Southern California, USA. Catena 57:221–232

    Article  CAS  Google Scholar 

  • Brinson M, Lugo A, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Article  Google Scholar 

  • Cahoon DR, Lynch J (1997) Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves Salt Marshes 1:173–186

    Article  Google Scholar 

  • Choon DR, Lynch J, Knaus R (1996) Improved cryogenic device for sampling wetland soils: research method paper. J Sediment Res 66:1025–1027

    Article  Google Scholar 

  • Cahoon DR, Turner RE (1989) Accretion and canal impacts in a rapidly subsiding wetland; II. Feldspar marker horizon technique. Estuaries 12:260–268

    Article  Google Scholar 

  • Cerón-Bretón JG, Cerón-Bretón RM, Rangel-Marrón M, Muriel-García M, Cordoba-Quiroz AV, Estrella-Cahuich A (2011) Determination of carbon sequestration rate in soil of a mangrove forest in Campeche, Mexico. Int J Energ Environ 3:328–336

    Google Scholar 

  • Chapman VJ, Ronaldson JW (1958) The mangrove and salt-marsh flats of the Auckland Isthmus. N Z Dep Sci Ind Res Bull 125:1–79

    Google Scholar 

  • Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl Ecol Manag 13:671–684

    Article  Google Scholar 

  • Conant R, Ryan M, Ågrin G et al (2011) Temperature and soil organic matter decomposition rates –synthesis of current knowledge and a way forward. Global Change Biol 17:3392–3404

    Article  Google Scholar 

  • Conner W, Day J (1976) Productivity and composition of a bald cypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp. Am J Bot 63:1354–1364

    Article  Google Scholar 

  • Craft CB, Broome SW, Seneca ED (1988) Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils. Estuaries 11:272–280

    Article  CAS  Google Scholar 

  • Craft C, Casey W (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20:323–332

    Article  Google Scholar 

  • Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • DeLaune RD, Whitcomb J, Jr P, Pardue J, Pezashki SR (1989) Accretion and canal impacts in a rapidly subsiding wetland. Techniques 137Cs and210 Pb. Estuaries 12:247–259

    Article  CAS  Google Scholar 

  • Donato D, Kauffman J, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Fengel D, Weneger G (1984) Wood: chemistry ultrastructure, reactions. Walter de Gruyter, Berlin, 560 pp

    Google Scholar 

  • Giroux JF, Bedard J (1988) Estimating above and belowground macrophyte production in Scirpus tidal marshes. Can J Bot 66:368–374

    Article  Google Scholar 

  • Harter S, Mitsch W (2003) Patterns of short-term sedimentation in freshwater created marsh. J Environ Qual 32:325–334

    Article  PubMed  CAS  Google Scholar 

  • Hatton R, DeLaune R, Patrick J (1983) Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnol Oceanogr 28:494–502

    Article  Google Scholar 

  • Hernández ME, Mitsch WJ (2007) Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. J Environ Qual 36:333–342

    Article  PubMed  CAS  Google Scholar 

  • Hupp C, Demas C, Kroes D, Day R, Doyle T (2008) Recent sedimentation within the central Atchafalaya Basin, Louisiana. Wetlands 28:125–140

    Article  Google Scholar 

  • Infante D, Moreno-Casasola P, Madero-Vega C, Castillo-Campos G, Warner B (2011) Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico. For Ecol Manag 262:1514–1531

    Article  Google Scholar 

  • Infante D, Moreno-Casasola P, Madero-Vega C (2012) Litterfall of tropical forested wetlands of Veracruz in the coastal floodplains of the Gulf of Mexico. Aquat Bot 98:1–11

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth assessment report: synthesis report. IPCC, Geneva, p 2007

    Google Scholar 

  • Jeffries R, Darby S, Sear D (2003) The influence of vegetation and organic debris on flood-plain sediment dynamics: case study of a low-order stream in the new New Forest, England. Geomorphology 51:61–80

    Article  Google Scholar 

  • Jobbágy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Belowground Process Global Change 10:423–436

    Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark A (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Article  Google Scholar 

  • Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31:343–352

    Article  Google Scholar 

  • Khan N, Suwa R, Hagihara (2007) A Carbon and nitrogen pool in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil–vegetation system. Wetl Ecol Manag 15:141–153

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kögel-Knabner (2002) The macromolecular organic composition of plant and microbial residues as input to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Lewis W (2000) Wetlands: characteristics and boundaries, 2nd edn. National Academy of Sciences, USA

    Google Scholar 

  • Loomis M, Craft C (2010) Carbon sequestration and nutrient (Nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Sci Soc Am J 74:1028–1036

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792

    Article  CAS  Google Scholar 

  • Lot-Helgueras A (2004) Flora and vegetation of freshwater wetlands in the coastal zone of the Gulf of Mexico. In: Caso M, Pisanty I, Ezcurra E (eds) Environmental analysis of the Gulf of Mexico. SEMARNAT - Instituto Nacional de Ecología - Instituto de Ecología, A.C/Harte Research Institute for Gulf of Mexico Studies - Texas A&M University, Mexico, pp 314–339

    Google Scholar 

  • Loucks OL (1990) Restoration of the pulse control function of wetlands and 658 its relationship to water quality objectives. In: Kusler JA, Kentula ME (eds) Wetland creation and restoration: the status of science. USEPA, Corvallis, pp 467–477

    Google Scholar 

  • Mbah CN, Idike FI (2011) Carbon storage in tropical agricultural soils of south eastern Nigeria under different management practice. Int Res J Agric Sci Soil Sci 1:053–057

    Google Scholar 

  • Middleton BA (2002) The flood pulse concept in wetland restoration. In: Middleton B (ed) Flood pulsing in wetlands: restoring the natural hydrological balance. John Wiley and Sons, New York, pp 1–10

    Google Scholar 

  • Mitsch WJ, Taylor R, Benson K (1991) Estimating primary productivity of forested wetland communities in different hydrologic landscapes. Landsc Ecol 5:75–92

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. John Wiley & Sons, New York, 582 pp

    Google Scholar 

  • Mitsch W, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manag 18:573–686

    Article  CAS  Google Scholar 

  • Moreno E, Guerrero A, Gutiérrez M, Ortiz C, Palma D (2002) Los manglares de Tabasco, una reserva natural de carbono. Madera Bosques 8:115–128

    Google Scholar 

  • Moreno-Casasola P, López H, Infante D, Peralta L, Travieso-Bello AC, Warner BG (2009) Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, México. Plant Ecol 200:37–52

    Article  Google Scholar 

  • Moreno-Casasola P, Cejudo-Espinosa E, Infante-Mata D, López-Rosas H, Castillo-Campos G, Pale-Pale J, Campos-Cascaredo A (2010) Composición florística, diversidad y ecología de humedales herbáceos emergentes en la planicie costera central de Veracruz, México. Bol Soc Bot Méx 87:29–50

    Google Scholar 

  • Moreno-May GJ, Cerón-Bretón JG, Cerón-Bretón RM, Guerra-Santos JJ, Amador del Ángel LE, Endañú-Huerta E (2010) Estimación del potencial de captura de carbono en suelos de manglar de isla del Carmen. Unacar Tecnociencia 4:23–39

    Google Scholar 

  • Neubauer SC, Miller WD, Anderson IC (2000) Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Mar Ecol Prog Ser 199:13–31

    Article  CAS  Google Scholar 

  • Neue HU, Gaunt LL, Wang LP, Becker-Heidmann P, Quijano C (1997) Carbon in tropical wetlands. Geoderma 79:163–185

    Article  CAS  Google Scholar 

  • Noe G, Hupp C (2009) Retention of riverine sediment and nutrient loads by coastal plain floodplains. Ecosystems 12:728–746

    Article  CAS  Google Scholar 

  • Noe G, Hupp C (2005) Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic coastal plain rivers, USA. Ecol Appl 15:1178–1190

    Article  Google Scholar 

  • Nyman J, Walters R, Delaune R, Patrick W Jr (2006) Marsh vertical accretion via vegetative growth. Estuar Coast Shelf Sci 69:370–380

    Article  Google Scholar 

  • Olmsted I (1993) Wetlands of Mexico. In: Whigham DF, Dykyjová D, Hejnÿ S (eds) Wetlands of the world I: inventory, ecology and management. Handbook of vegetation science. Kluwer Academic Publishers, Dordrcht, pp 637–678

    Chapter  Google Scholar 

  • Pant H, Rechcigl J, Adjei M (2003) Carbon sequestration in wetlands: concept and estimation. Food Agr Environ 1:308–313

    CAS  Google Scholar 

  • Peralta-Peláez LA, Moreno-Casasola P (2009) Composición florística y diversidad de la vegetación de humedales en los lagos interdunarios de Veracruz. Bol Soc Bot Méx 85:89–101

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Post W, Izaurralde C, Jastrow J, McCarl B, Amonette J, Bailey V, Jardine P, West T, Zhou J (2004) Enhancement of carbon sequestration in US soils. BioScience 54:895–908

    Article  Google Scholar 

  • Richardson JL, Vepraskas MJ (2000) Wetland soils: genesis, hydrology, landscapes and classification. Lewis Publishers, Boca Raton

    Google Scholar 

  • Sánchez-Carrillo S, Álvarez-Cobelas M, Angeler D (2001) Sedimentation in the semi-arid freshwater wetland Las Tablas de Daimiel (Spain). Wetlands 21:112–124

    Article  Google Scholar 

  • Schubauer JP, Hopkinson CS (1984) Above and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnol Oceonogr 29:1052–1065

    Article  Google Scholar 

  • Sharitz RR, Mitsch WJ (1993) Southern floodplain forests. In: Martin WH, Boyce SG, Echternacht AC (eds) Biodiversity of the Southeastern United States, Lowland Terrestrial Communities. John Wiley & Sons, New York, pp 311–372

    Google Scholar 

  • SPSS (2009) Statistical package for the social sciences. Rel. 18.0 for windows XP. SPSS Inc, Chicago

    Google Scholar 

  • Symbula M, Day Jr (1988) Evaluation of two methods for estimating belowground production in a freshwater swamp forest. Am Midl Nat 120:404–415

    Article  Google Scholar 

  • Tormann M, Bayley S (1997) Aboveground net primary production along a bog-fen-marsh gradient in southern boreal Alberta Canada. Ecoscience 4:374–384

    Google Scholar 

  • Warner B, Aravena R, Moreno-Casasola P (2005) Cambio climático y reciclaje de carbono en los humedales costeros. In: Moreno-Casasola P, Peresbarsoba R, Travieso-Bello AC (eds) Estrategias para el manejo costero integral: el enfoque municipal. Instituto de Ecología, A. C. y Gobierno del Estado de Veracruz-Llave Xalapa, Ver, Mexico, pp 297–318

    Google Scholar 

  • Wang H, Wang R, Yu Y, Mitchell M, Zhang L (2011) Soil organic carbon of degraded wetlands treated with freshwater in the yellow river delta, China. J Environ Manage 92:2628–2633

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Tian H, Liu J, Pan S (2003) Pattern and change of soil organic carbon storage in China: 1960–1980s. Tellus 55:416–427

    Article  Google Scholar 

  • Walkotten WJ (1976) An improved technique for freeze sampling streambed sediments. Forestry Research Technician. USDA For Service Research Note. PNW-281, 11 pp. Pac. Northwest For. and Range Exp. Stn, Portland

    Google Scholar 

  • Yetter JC (2004) Hydrology and geochemistry of freshwater wetlands on the Gulf coast of Veracruz, Mexico. MS Thesis. University of Waterloo, Ontario, 168 pp

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Mexican National Council for Science and Technology -CONACYT- through the basic science project No. 081942, Sectorial Fund SEMARNAT-CONACYT Project No. 107887 and the PhD. scholarship No. 35192. The authors thank Alejandro Hernández, Lamberto Aragón, Ranulfo Castillo, Monserrat Vidal, J. Alejandro Marín and Carmelo Maximiliano for their help in the field work. We are grateful to the local guides who accompanied us throughout the field work: Tomas León Rodríguez and Eduardo Lauranchet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Marín-Muñiz.

Additional information

Responsible Editor: Zucong Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín-Muñiz, J.L., Hernández, M.E. & Moreno-Casasola, P. Comparing soil carbon sequestration in coastal freshwater wetlands with various geomorphic features and plant communities in Veracruz, Mexico. Plant Soil 378, 189–203 (2014). https://doi.org/10.1007/s11104-013-2011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-2011-7

Keywords

Navigation