Skip to main content

Advertisement

Log in

Effects of semi-lunar tidal cycling on soil CO2 and CH4 emissions: a case study in the Yangtze River estuary, China

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Coastal wetlands, commonly inundated by periodic tides, have been recognized as important sources of greenhouse gases. However, little is known of tidal effects on in situ soil CO2 and CH4 emissions in a semi-lunar tidal cycle consisting of neap and spring tide periods (NTP and STP). A field study was conducted in the Yangtze River estuary to investigate temporal variations of soil CO2 and CH4 emissions along with the transition from NTP to STP in a semi-lunar tidal cycle. Soil moisture, salinity and sulfate were significantly greater in STP than in NTP, whereas soil redox potential had an opposite pattern because of frequent tidal inundation. Soil CO2 and CH4 effluxes decreased significantly in STP, being 29–34 and 28–35 %, respectively, compared with those in NTP. The decrease in soil CO2 effluxes was likely attributable to two causes, an anaerobic environment inhibiting CO2 production, and tidal inundation impeding CO2 diffusion from the soil into the atmosphere. The inhibition of methanogenesis by increased soil salinity and sulfate was likely the primary reason of the decrease in CH4 effluxes during STP. Our results suggest that the effects of semi-lunar tidal cycling significantly reduce soil carbon emissions, which may be one of the potential mechanisms underlying strong carbon accumulation in wetlands of the Yangtze River estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chambers LG, Reddy KR, Osborne TZ (2011) Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci Soc Am J 75:2000–2007. doi:10.2136/sssaj2011.0026

    Article  CAS  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chen GC, Tam NFY, Ye Y (2012) Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biol Biochem 48:175–181. doi:10.1016/j.soilbio.2012.01.029

    Article  CAS  Google Scholar 

  • Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biol Biochem 38:3380–3386. doi:10.1016/j.soilbio.2006.05.016

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles. doi:10.1029/2002gb001917

    Google Scholar 

  • de Mars H, Wassen MJ (1999) Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecol 140:41–51. doi:10.1023/a:1009733113927

    Article  Google Scholar 

  • Dowrick DJ, Freeman C, Lock MA, Reynolds B (2006) Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132:384–390. doi:10.1016/j.geoderma.2005.06.003

    Article  CAS  Google Scholar 

  • Freeman C, Hudson J, Lock MA, Reynolds B, Swanson C (1994) A possible role of sulphate in the suppression of wetland methane fluxes following drought. Soil Biol Biochem 26(10):1439–1442. doi:10.1016/0038-0717(94)90229-1

    Article  CAS  Google Scholar 

  • Glatzel S, Basiliko N, Moore T (2004) Carbon dioxide and methane production potentials of peats from natural, harvested, and restored sites, eastern Quebec, Canada. Wetlands 24:261–267

    Article  Google Scholar 

  • Hawkins JE, Freeman C (1994) Rising sea levels—potential effects upon terrestrial greenhouse gas production. Soil Biol Biochem 26:325–329. doi:10.1016/0038-0717(94)90281-X

    Article  CAS  Google Scholar 

  • Hines ME, Banta GT, Giblin AE, Hobbie JE, Tugel JB (1994) Acetate concentrations and oxidation in salt-marsh sediments. Limnol Oceanogr 39:140–148. doi:10.4319/lo.1994.39.1.0140

    Article  Google Scholar 

  • Hojberg O, Revsbech NP, Tiedje JM (1994) Denitrification in soil aggregates analyzed with microsensors for nitrous oxide and oxygen. Soil Sci Soc Am J 58:1691–1698. doi:10.2136/sssaj1994.03615995005800060016x

    Article  CAS  Google Scholar 

  • Howes BL, Dacey JWH, King GM (1984) Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol Oceanogr 29:1037–1051. doi:10.4319/lo.1984.29.5.1037

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Cambridge University Press, Cambridge

    Google Scholar 

  • Jungkunst HF, Flessa H, Scherber C, Fiedler S (2008) Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047–2054. doi:10.1016/j.soilbio.2008.04.015

    Article  CAS  Google Scholar 

  • King GM (1988) Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh. Limnol Oceanogr 33:376–390

    Article  CAS  Google Scholar 

  • Koh HS, Ochs CA, Yu KW (2009) Hydrologic gradient and vegetation controls on CH4 and CO2 fluxes in a spring-fed forested wetland. Hydrobiologia 630:271–286. doi:10.1007/s10750-009-9821-x

    Article  CAS  Google Scholar 

  • Kostka JE, Roychoudhury A, Van Cappellen P (2002) Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60:49–76. doi:10.1023/a:1016525216426

    Article  CAS  Google Scholar 

  • Kvale EP (2006) The origin of neap-spring tidal cycles. Mar Geol 235:5–18. doi:10.1016/j.margeo.2006.10.001

    Article  Google Scholar 

  • Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520. doi:10.1016/j.ecoleng.2008.05.013

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems 10:1351–1361. doi:10.1007/s10021-007-9103-2

    Article  CAS  Google Scholar 

  • Livesley SJ, Andrusiak SM (2012) Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar Coast Shelf Sci 97:19–27. doi:10.1016/j.ecss.2011.11.002

    Article  CAS  Google Scholar 

  • Lu R (1999) Chemical analysis of agricultural soils. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Lyimo TJ, Pol A, den Camp H (2002) Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio 31:614–616. doi:10.1579/0044-7447-31.7.614

    Article  PubMed  Google Scholar 

  • Martin-Olmedo P, Rees RM (1999) Short-term N availability in response to dissolved-organic-carbon from poultry manure, alone or in combination with cellulose. Biol Fertil Soils 29:386–393. doi:10.1007/s003740050569

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi:10.1890/110004

    Article  Google Scholar 

  • Mendoza UN, da Cruz CC, Menezes MP, Lara RJ (2012) Flooding effects on phosphorus dynamics in an Amazonian mangrove forest, Northern Brazil. Plant Soil 353:107–121. doi:10.1007/s11104-011-1013-6

    Article  CAS  Google Scholar 

  • Mi N, Wang SQ, Liu JY, Yu GR, Zhang WJ, Jobbaagy E (2008) Soil inorganic carbon storage pattern in China. Glob Change Biol 14:2380–2387. doi:10.1111/j.1365-2486.2008.01642.x

    Article  Google Scholar 

  • Morris JT, Haskin B (1990) A 5-year record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71:2209–2217. doi:10.2307/1938633

    Article  Google Scholar 

  • Mozdzer TJ, Kirwan M, McGlathery KJ, Zieman JC (2011) Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora. Mar Ecol Prog Ser 433:43–52. doi:10.3354/meps09117

    Article  CAS  Google Scholar 

  • Patra S, Liu CQ, Li SL, Wang BL, Wang QL (2007) A geochemical study on carbon cycling in the Changjiang estuary. Earth Environ 38:409–413 (in Chinese with English abstract)

    Google Scholar 

  • Peng RH, Fang CM, Li B, Chen JK (2011) Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze estuary, China. Oecologia 165:797–807. doi:10.1007/s00442-010-1887-7

    Article  PubMed  Google Scholar 

  • Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842. doi:10.1007/s13157-011-0197-0

    Article  Google Scholar 

  • Purvaja R, Ramesh R (2001) Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manag 27:547–557. doi:10.1007/s002670010169

    Article  CAS  Google Scholar 

  • Roychoudhury AN, Van Cappellan P, Kostka JE, Viollier E (2003) Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA). Estuar Coast Shelf Sci 56:1001–1010. doi:10.1016/s0272-7714(02)00325-6

    Article  CAS  Google Scholar 

  • Sasaki A, Hagimori Y, Nakatsubo T, Hoshika A (2009) Tidal effects on the organic carbon mineralization rate under aerobic conditions in sediments of an intertidal estuary. Ecol Res 24:723–729. doi:10.1007/s11284-008-0545-6

    Article  CAS  Google Scholar 

  • Seybold CA, Mersie W, Huang JY, McNamee C (2002) Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland. Wetlands 22:149–158

    Article  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  • Tang L, Gao Y, Wang CH, Wang JQ, Li B, Chen JK, Zhao B (2010) How tidal regime and treatment timing influence the clipping frequency for controlling invasive Spartina alterniflora: implications for reducing management costs. Biol Invasions 12:593–601. doi:10.1007/s10530-009-9465-9

    Article  Google Scholar 

  • Tong C, Wang WQ, Zeng CS, Marrs R (2010) Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China. J Environ Sci Health A 45:506–516. doi:10.1080/10934520903542261

    Article  CAS  Google Scholar 

  • Tong C, Yao S, Wang WQ, Huang JF, Zhang LH, Zhang WL, Zeng CS (2012) Methane dynamics in a Cyperus malaccensis tidal marsh in southeast China. Sci China Earth Sci 42:723–735 (in Chinese with English abstract)

    Google Scholar 

  • Trilla GG, De Marco S, Marcovecchio J, Vicari R, Kandus P (2010) Net primary productivity of Spartina densiflora Brong in an SW Atlantic Coastal Salt Marsh. Estuar Coast 33:953–962. doi:10.1007/s12237-010-9288-z

    Article  Google Scholar 

  • Wang SJ, Hassan MA, Xie XP (2006) Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta. CATENA 65:302–314. doi:10.1016/j.catena.2006.01.003

    Article  Google Scholar 

  • Wang DQ, Chen ZL, Xu SY (2009) Methane emission from Yangtze estuarine wetland China. J Geophys Res Biogeosci. doi:10.1029/2008jg000857

    Google Scholar 

  • Weston NB, Vile MA, Neubauer SC, Velinsky DJ (2011) Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102:135–151. doi:10.1007/s10533-010-9427-4

    Article  CAS  Google Scholar 

  • Williams JR, Dellapenna TM, Lee GH (2013) Shifts in depositional environments as a natural response to anthropogenic alterations: Nakdong estuary, South Korea. Mar Geol 343:47–61. doi:10.1016/j.margeo.2013.05.010

    Article  CAS  Google Scholar 

  • Xu HF, Zhao YL (2003) Scientific survey on Chongming Dongtan migratory birds nature reserve of Shanghai. Forestry Science Press, Beijing

    Google Scholar 

  • Yamamoto A, Hirota M, Suzuki S, Oe Y, Zhang PC, Mariko S (2009) Effects of tidal fluctuations on CO2 and CH4 fluxes in the littoral zone of a brackish-water lake. Limnology 10:228–237. doi:10.1007/s10201-009-0284-6

    Google Scholar 

  • Yamamoto A, Hirota M, Suzuki S, Zhang PC, Mariko S (2011) Surrounding pressure controlled by water table alters CO2 and CH4 fluxes in the littoral zone of a brackish-water lake. Appl Soil Ecol 47:160–166. doi:10.1016/j.apsoil.2010.12.010

    Article  Google Scholar 

  • Yang SL, Ding PX, Chen SL (2001) Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China. Geomorphology 38:167–180. doi:10.1016/s0169-555x(00)00079-9

    Article  Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Xiang J, Lin YX (2014) Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Appl Microbiol Biotechnol 98:1817–1829. doi:10.1007/s00253-013-5104-6

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Yan Y, Guo HQ, He MM, Gu YJ, Li B (2009) Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: an application in the Yangtze River Delta area. Ecol Indic 9:346–356. doi:10.1016/j.ecolind.2008.05.009

    Article  Google Scholar 

  • Zou YC, Lu XG, Jiang M (2009) Dynamics of dissolved iron under pedohydrological regime caused by pulsed rainfall events in wetland soils. Geoderma 150:46–53. doi:10.1016/j.geoderma.2009.01.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (No. 2013CB430404), “12th Five-Year” national science and technology support program (No. 2011BA11B06), National Science Foundation of China (31170450) and Shanghai Science and Technology Innovation Action Plan (3JC1400400). Water Resource Science and Technology of Jiangsu province (2014056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Ming Fang or Gang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, NS., Qu, JF., Zhao, H. et al. Effects of semi-lunar tidal cycling on soil CO2 and CH4 emissions: a case study in the Yangtze River estuary, China. Wetlands Ecol Manage 23, 727–736 (2015). https://doi.org/10.1007/s11273-015-9415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-015-9415-5

Keywords

Navigation