Skip to main content
Log in

Hydrologic gradient and vegetation controls on CH4 and CO2 fluxes in a spring-fed forested wetland

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Four different habitats in a spring-fed forested wetland (Clear Springs Wetland, Panola County, Mississippi, USA) varying in hydrologic regime were examined for methane and carbon dioxide fluxes from soils over 15 and 9 months, respectively. There was an increasing gradient of CH4 flux rates from an unflooded upper-elevation forest site to an occasionally flooded bottomland forest site to a shallow permanently flooded site, and then to a deeper-water permanently flooded site. Depending on the time of year, all sites were sources of methane but only at the upper-elevation forest site, when gravimetric soil moisture content fell below 54%, was atmospheric methane consumed. On average, summer CH4 emission rates were higher than those in other seasons. A multiple regression model with soil temperature and soil redox potential as independent variables could explain 65% of the variation in CH4 flux rates. In the flooded zone, variation in CH4 flux rates was correlated with aboveground plant biomass and stem density of emergent vascular plants, and plant-mediated CH4 transport depended on plant type. The efflux of CH4 to plant biomass (Eff:B) ratio was generally lower in Hydrocotyle umbellata compared to Festuca obtusa. Compared to several other freshwater forested wetlands in the southeastern USA, this spring-fed forested wetland ecosystem was a strong source of atmospheric CH4, likely due to a long hydroperiod and high soil organic matter content. Carbon dioxide fluxes show a reverse spatial pattern than CH4 fluxes with highest CO2 emissions in the non-flooded zone at all times of the year, indicating the dominance of aerobic soil respiration. A multiple regression model also revealed a strong dependency of CO2 fluxes (r 2 = 0.73) on soil temperature and soil redox potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamsen, A. P. S. & G. M. King, 1993. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation and responses to water and nitrogen. Applied Environmental Microbiology 59: 485–490.

    CAS  Google Scholar 

  • Aselmann, I. & P. J. Crutzen, 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307–358.

    Article  CAS  Google Scholar 

  • Bartlett, K. B. & R. C. Harriss, 1993. Review and assessment of methane emissions from wetlands. Chemosphere 26: 261–320.

    Article  CAS  Google Scholar 

  • Bellisario, L. M., J. L. Bubier & T. R. Moore, 1999. Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles 13: 81–91.

    Article  CAS  Google Scholar 

  • Binkley, D., R. Stottlemeyer, F. Suarez & J. Cortina, 1994. Soil nitrogen availability in some arctic ecosystems in Northwest Alaska: responses to temperature and moisture. Ecoscience 1: 64–70.

    Google Scholar 

  • Bridgham, S. D. & C. J. Richardson, 1992. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biology and Biochemistry 24: 1089–1099.

    Article  CAS  Google Scholar 

  • Cao, M., S. Marshall & K. Gregson, 1996. Global carbon exchange and methane emission from natural wetlands: application of a process-based model. Journal of Geophysical Research 101: 14399–14414.

    Article  CAS  Google Scholar 

  • Castro, M. S., P. A. Steudler, J. M. Melillo, J. D. Aber & R. D. Bowden, 1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles 9: 1–10.

    Article  CAS  Google Scholar 

  • Chanton, J. P., G. J. Whiting, J. D. Happell & G. Gerard, 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany 46: 111–128.

    Article  CAS  Google Scholar 

  • Chimel, J., 1995. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28: 183–200.

    Article  Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer & H. Schütz, 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiology Ecology 62: 285–294.

    Article  CAS  Google Scholar 

  • Czepiel, P., P. M. Crill & R. Harriss, 1995. Environmental factors influencing the variability of methane oxidation in temperate zone soils. Journal of Geophysical Research 100: 9359–9364.

    Article  CAS  Google Scholar 

  • Davidson, E. A., E. Belk & R. D. Boone, 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217–227.

    Article  Google Scholar 

  • Dong, Y., D. Scharffe, J. M. Lobert, P. J. Crutzen & E. Sanhueza, 1998. Fluxes of CO2, CH4 and N2O from a temperate forest soil: the effects of leaves and humus layers. Tellus 50B: 243–252.

    CAS  Google Scholar 

  • Fenchel, T. & B. J. Finlay, 1995. Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Fenchel, T., G. M. King & T. H. Blackburn, 1998. Bacterial Biogeochemistry. Academic Press, San Diego, USA.

    Google Scholar 

  • Flessa, H., P. Doersch & F. Beese, 1995. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. Journal of Geophysical Research 100: 23115–23124.

    Article  CAS  Google Scholar 

  • Frenzel, P. & E. Karofeld, 2000. CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51: 91–112.

    Article  CAS  Google Scholar 

  • Garcia, J. L., B. K. C. Patel & B. Ollivier, 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archae. Anaerobe 6: 205–226.

    Article  PubMed  CAS  Google Scholar 

  • Glatzel, S., N. Basiliko & T. Moore, 2004. Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Quebec, Canada. Wetlands 24: 261–267.

    Article  Google Scholar 

  • Gulledge, J. & J. P. Schimel, 2000. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in interior Alaska. Ecosystems 3: 269–282.

    Article  Google Scholar 

  • Harriss, R. & D. Sebacher, 1981. Methane flux in forested freshwater swamps of the southeastern United States. Geophysical Research Letters 8: 1002–1004.

    Article  CAS  Google Scholar 

  • Harriss, R. C., D. I. Sebacher & F. P. Day, 1982. Methane flux in the Great Dismal Swamp. Nature 297: 673–674.

    Article  CAS  Google Scholar 

  • Hyvönen, T., A. Ojala, P. Kankaala & P. J. Martikainen, 1998. Methane release from stands of water horsetail (Equisetum fluviatile) in a boreal lake. Freshwater Biology 40: 275–284.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Joabsson, A. & T. R. Christensen, 2001. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7: 919–932.

    Article  Google Scholar 

  • Kankaala, P., S. Makela, I. Bergstrom, E. Huitu, T. Käki, A. Ojala, M. Rantakari, P. Kortelainen & L. Arvola, 2003. Midsummer spatial variation in methane efflux from stands of littoral vegetation in a boreal meso-eutrophic lake. Freshwater Biology 48: 1617–1629.

    Article  Google Scholar 

  • Kankaala, P., A. Ojala & T. Käki, 2004. Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry 68: 297–311.

    Article  CAS  Google Scholar 

  • Kankaala, P., T. Kaki, S. Makela, A. Ojala, H. Pajunen & L. Arvola, 2005. Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Global Change Biology 11: 145–153.

    Article  Google Scholar 

  • Keith, H., K. L. Jacobsen & R. J. Raison, 1997. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil 190: 127–141.

    Article  CAS  Google Scholar 

  • Kelker, D. & J. Chanton, 1997. The effect of clipping on methane emissions from Carex. Biogeochemistry 39: 37–44.

    Article  CAS  Google Scholar 

  • Kelly, C. A. & D. P. Chynoweth, 1981. The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis. Limnology and Oceanography 26: 891–897.

    CAS  Google Scholar 

  • King, G. M., 1996. In site analyses of methane oxidation associated with the roots and rhizomes of a bur reed. Sparganium eurycarpum. in a Maine wetland. Applied Environmental Microbiology 62: 4548–4555.

    CAS  Google Scholar 

  • King, G. M. & A. P. S. Adamsen, 1992. Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Applied and Environmental Microbiology 58: 2758–2763.

    PubMed  CAS  Google Scholar 

  • King, J. Y., W. S. Reeburgh & S. R. Regli, 1998. Methane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment. Journal of Geophysical Research 103: 29083–29092.

    Article  CAS  Google Scholar 

  • Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediments: which is faster? Limnology and Oceanography 40: 1430–1437.

    CAS  Google Scholar 

  • Kutsch, W. L. & L. Kappen, 1997. Aspects of carbon and nitrogen cycling in soils of the Bornhöved Lakes district II. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different management. Biogeochemistry 39: 207–224.

    Article  Google Scholar 

  • LeMer, J. & P. Roger, 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37: 25–50.

    Article  CAS  Google Scholar 

  • Livingston, G. P. & G. L. Hutchinson, 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In Matson, P. A. & R. C. Harriss (eds), Biogenic Trace Gases: Measuring Emissions From Soil and Water. Blackwell Science, Oxford. UK: 14–51.

    Google Scholar 

  • Lombardi, J. E., M. A. Epp & J. P. Chanton, 1997. Investigation of the methyl fluoride technique for determining rhizospheric methane oxidation. Biogeochemistry 36: 153–172.

    Article  CAS  Google Scholar 

  • MacDonald, J. A., D. Jeeva, P. Eggleton, R. Davies, D. E. Bignell, D. Fowler, J. Lawton & M. Maryati, 1999. The effect of termite biomass and anthropogenic disturbance on the CH4 budgets of tropical forests in Cameroon and Borneo. Global Change Biology 5: 869–879.

    Article  Google Scholar 

  • Malhi, Y., A. D. Nobre, J. Grace, B. Kruijt, M. J. P. Pereira, A. Culf & S. Scott, 1998. Carbon dioxide transfer over a Central Amazonian rain forest. Journal of Geophysical Research D 24: 31593–31612.

    Article  Google Scholar 

  • Malmer, N., B. M. Svensson & B. Wallén, 1994. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica Phytotaxonomica 29: 483–496.

    Google Scholar 

  • Matthews, E. & I. Fung, 1987. Methane emission from natural wetlands: global distribution, area and environmental characteristics of sources. Chemosphere 1: 61–86.

    CAS  Google Scholar 

  • McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.

    Article  CAS  Google Scholar 

  • Moore, T. & M. Dalva, 1993. The influence of temperature and water-table position on carbon-dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science 44: 651–664.

    Article  CAS  Google Scholar 

  • Moore, T. R. & R. Knowles, 1989. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science 69: 33–38.

    Article  CAS  Google Scholar 

  • Mosier, A. R., 1989. Chamber and isotope techniques. In Andreae, M. O. & D. S. Schimel (eds), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. Wiley, Chichester: 175–187.

    Google Scholar 

  • Nadelhoffer, K. J., A. E. Giblin, G. R. Shaver & L. A. Laundre, 1991. Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 72: 242–253.

    Article  Google Scholar 

  • Nakano, T., G. Inoue & M. Fukuda, 2004. Methane consumption and soil respiration by a birch forest soil in West Siberia. Tellus B 56: 223–229.

    Article  Google Scholar 

  • Oechel, W. C., G. L. Vouritis, S. J. Hastings, R. P. Ault Jr. & P. Bryant, 1998. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Global Change Biology 4: 1365–2486.

    Article  Google Scholar 

  • Ojima, D. S., D. W. Valentine, A. R. Mosier, W. J. Parton & D. S. Schimel, 1993. Effect of landuse change on methane oxidation in temperate forest and grassland soils. Chemosphere 26: 675–685.

    Article  CAS  Google Scholar 

  • Otter, L. B. & M. C. Scholes, 2000. Methane sources and sinks in a periodically flooded South African savanna. Global Biogeochemical Cycles 14: 97–111.

    Article  CAS  Google Scholar 

  • Potter, C. S., E. A. Davidson & L. V. Verchot, 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32: 2219–2246.

    Article  CAS  Google Scholar 

  • Pulliam, W., 1993. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63: 29–53.

    Article  Google Scholar 

  • Reeburgh, W. S., N. T. Roulet & B. H. Svensson, 1994. Terrestrial biosphere-atmosphere exchange in high latitudes. In Prinn, R. G. (ed.), Global Atmospheric-Biospheric Chemistry. Plenun Press, New York: 165–178.

    Google Scholar 

  • Schütz, H., P. Schroder & H. Rennenberg, 1991. Role of plants in regulating the methane flux to atmosphere. In Sharkey, T., E. Holland & H. Mooney (eds), Trace Gas Emissions by Plants. Academic Press, Sand Diego: 29–63.

    Google Scholar 

  • Sebacher, D. I., R. C. Harriss & K. B. Bartlett, 1985. Methane emissions to the atmosphere through aquatic plants. Journal of Environmental Quality 14: 40–46.

    CAS  Google Scholar 

  • Shannon, R. D., J. R. White, J. E. Lawson & B. S. Gilmour, 1996. Methane efflux from emergent vegetation in peatlands. Journal of Ecology 84: 239–246.

    Article  CAS  Google Scholar 

  • Sitaula, B. K., L. R. Bakken & G. Abrahamsen, 1995. CH4 uptake by temperate forest soil: effect of N input and soil acidification. Soil Biology and Biochemistry 27: 871–880.

    Article  CAS  Google Scholar 

  • St. Louis, V. L., C. A. Kelly, E. Duchemin, J. W. M. Rudd & D. M. Rosenburg, 2000. Reservoir surface as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50: 766–775.

    Article  Google Scholar 

  • U.S. Department of Agriculture, 1963. Soil Survey of Panola Country, Mississippi. Soil Conservation Service, Washington DC.

    Google Scholar 

  • Van der Nat, H. & J. Middelburg, 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany 61: 95–110.

    Article  Google Scholar 

  • Weight, W. D. & J. L. Sonderegger, 2001. Manual of Applied Field Hydrogeology. McGraw-Hill, New York.

    Google Scholar 

  • Whiting, G. J. & J. P. Chanton, 1993. Primary production control of methane emission from wetlands. Nature 364: 794–795.

    Article  CAS  Google Scholar 

  • Wickland, K. P., R. G. Striegl, S. K. Schmidt & M. A. Mast, 1999. Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountain. Global Biogeochemical Cycles 13: 101–113.

    Article  CAS  Google Scholar 

  • Wilson, J. O., P. M. Crill, K. B. Bartlett, D. I. Sebacher, R. C. Harriss & R. L. Sass, 1989. Seasonal variation of methane emissions from a temperate swamp. Biogeochemistry 8: 55–71.

    Article  CAS  Google Scholar 

  • Yu, K. W., Z. P. Wang & G. X. Chen, 1997. Nitrous oxide and methane transport through rice plants. Biology and Fertility of Soils 24: 341–343.

    Article  CAS  Google Scholar 

  • Yu, K. W., F. Bohme, J. Rinklebe, H. U. Neue & R. D. DeLaune, 2007. Major biogeochemical processes in rice soils a microsom incubation from reducing to oxidizing conditions. Soil Science Society of America Journal 71: 1406–1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Nelson and Jim Pearson for technical support, Marjorie Holland, Stephen Brewer, and Lucile McCook for valuable discussions, and David Reed for statistical advice. The U.S. Army Corps of Engineers Sardis Lake Field Office kindly gave permission to access the wetland for the duration of the research project. Suggestions from an anonymous reviewer improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Suk Koh.

Additional information

Handling editor: J. M. Melack

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, HS., Ochs, C.A. & Yu, K. Hydrologic gradient and vegetation controls on CH4 and CO2 fluxes in a spring-fed forested wetland. Hydrobiologia 630, 271–286 (2009). https://doi.org/10.1007/s10750-009-9821-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9821-x

Keywords

Navigation