Skip to main content
Log in

Nanoparticles as Detoxifiers for Industrial Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Industrial wastewater alludes to an amalgamation of an array of toxic pollutants that pose significant risks to human health and the environment. Traditional wastewater treatment methods often struggle to effectively remove these pollutants. However, recent advancements in nanotechnology combat this bottleneck of eliminating the pollutants by engendering nanoparticles as potential detoxifiers for industrial wastewater. This review aims to explore the applications of nanoparticles in wastewater treatment, focusing on their ability to effectively remove and detoxify toxic contaminants that act as pollutants. It is an elaborate and comprehensive description of various types of nanoparticles, their synthesis methods, mechanisms of pollutant removal, and their overall effectiveness in detoxifying industrial wastewater. This state of art information shall aid in further research and biotechnological applications of nanoparticles for wastewater management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abdelbasir, S. M., & Shalan, A. E. (2019). An overview of nanomaterials for industrial wastewater treatment. Korean Journal of Chemical Engineering, 36, 1209–1225.

    Article  CAS  Google Scholar 

  • Adam, R. E., Pozina, G., Willander, M., & Nur, O. (2018). Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics and Nanostructures, 32, 11–18. https://doi.org/10.1016/j.photonics.2018.08.005

    Article  Google Scholar 

  • Adeleye, A. S., Conway, J. R., Garner, K., Huang, Y., Su, Y., & Keller, A. A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286, 640–662.

    Article  CAS  Google Scholar 

  • Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., Hoang, A. T., & Shafiullah, G. M. (2022). Nanomaterials as a sustainable choice for treating wastewater. Environmental Research, 214(Pt 1), 113807. https://doi.org/10.1016/j.envres.2022.113807

    Article  CAS  Google Scholar 

  • Amin, M. T., Alazba, A. A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014, 1–24.

    Article  Google Scholar 

  • Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3, 117–129.

    Article  CAS  Google Scholar 

  • Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781.

    Article  CAS  Google Scholar 

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2013). Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater. Marine pollution bulletin, 72(1), 222–230. https://doi.org/10.1016/j.marpolbul.2013.04.001

    Article  CAS  Google Scholar 

  • Ayati, A., Ahmadpour, A., Bamoharram, F. F., Tanhaei, B., Mänttäri, M., & Sillanpää, M. (2014). A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere, 107, 163–174. https://doi.org/10.1016/j.chemosphere.2014.01.040

    Article  CAS  Google Scholar 

  • Ayoub, G. M., Zayyat, R. M., & Al-Hindi, M. (2014). Precipitation softening: A pretreatment process for seawater desalination. Environmental Science and Pollution Research International, 21(4), 2876–2887. https://doi.org/10.1007/s11356-013-2237-1

    Article  CAS  Google Scholar 

  • Babu, D. S., Srivastava, V., Nidheesh, P. V., & Kumar, M. S. (2019). Detoxification of water and wastewater by advanced oxidation processes. The Science of the Total Environment., 696, 133961.

    Article  CAS  Google Scholar 

  • Barsan, N., Zaharia, A., Chitimus, D., Mosnegutu, E., Florin, N., Rusu, D., & Capsa, D. (2020). A short review on the filtration process. 7th International Conference on Energy Efficiency and Agricultural Engineering. IEEE Science, 34(6), 755–781.

    Google Scholar 

  • Bayrami, A., Alioghli, S., Rahim, P. S., Habibi-Yangjeh, A., Khataee, A., & Ramesh, S. (2019). A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrasonics Sonochemistry, 55, 57–66. https://doi.org/10.1016/j.ultsonch.2019.03.010

    Article  CAS  Google Scholar 

  • Bayrami, A., Ghorbani, E., Pouran, S. R., Habibi-Yangjeh, A., Khataee, A., & Bayrami, M. (2019). Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrasonics Sonochemistry, 58, 104613. https://doi.org/10.1016/j.ultsonch.2019.104613

    Article  CAS  Google Scholar 

  • Bharagava, R. N., Saxena, G., Mulla, S. I., & Patel, D. K. (2018). Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Archives of Environmental Contamination and Toxicology, 75(2), 259–272. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by sol-gel method: Synthesis and application. Advances in Materials Science and Engineering, 2021, 5102014. https://doi.org/10.1155/2021/5102014

    Article  CAS  Google Scholar 

  • Cai, P. F., Su, C. J., Chang, W. T., Chang, F. C., Peng, C. Y., Sun, I. W., Wei, Y. L., Jou, C. J., & Wang, H. P. (2014). Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene. Marine Pollution Bulletin, 85(2), 733–737. https://doi.org/10.1016/j.marpolbul.2014.05.020

    Article  CAS  Google Scholar 

  • Chai, L., Li, Q., Wang, Q., & Yan, X. (2018). Solid-liquid separation: An emerging issue in heavy metal wastewater treatment. Environmental Science and Pollution Research International, 25(18), 17250–17267. https://doi.org/10.1007/s11356-018-2135-7

    Article  Google Scholar 

  • Chen, J. P., Mou, H., Wang, L. K., & Matsuura, T. (2006). Membrane filtration. In L. K. Wang, Y. T. Hung, & N. K. Shammas (Eds.), Advanced Physicochemical Treatment Processes. Handbook of Environmental Engineering (Vol. 4). Humana Press. https://doi.org/10.1007/978-1-59745-029-4_7

    Chapter  Google Scholar 

  • Chen, S. Y., Chen, W. H., & Shih, C. J. (2008). Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water science and technology : a journal of the International Association on Water Pollution Research, 58(10), 1947–1954. https://doi.org/10.2166/wst.2008.556

    Article  CAS  Google Scholar 

  • Cheremisinoff, N. P. (2002). Handbook of water and wastewater treatment technologies. Butterworth-Heinemann.

    Google Scholar 

  • Cohen, Y. (2001). Biofiltration--The treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresource Technology, 77(3), 257–274. https://doi.org/10.1016/s0960-8524(00)00074-2

    Article  CAS  Google Scholar 

  • Das, S. K., Khan, M. M., Guha, A. K., Das, A. R., & Mandal, A. B. (2012). Silver-nano biohybride material: Synthesis, characterization and application in water purification. Bioresource Technology, 124, 495–499. https://doi.org/10.1016/j.biortech.2012.08.071

    Article  CAS  Google Scholar 

  • Dutta, A., & Sarkar, S. (2015). Sequencing batch reactor for wastewater treatment: Recent advances. Current Pollution Reports, 1, 177–190.

    Article  Google Scholar 

  • Eckenfelder, W. W., Jr. (2000). Wastewater treatment. In Kirk-Othmer Encyclopedia of Chemical Technology. Wiley Online Library.

    Google Scholar 

  • Edzwald, J. K. (2006). Dissolved air flotation in drinking water treatment. In Interface Science and Technology (Vol. 10, pp. 89–107). Elsevier.

    Google Scholar 

  • Englande, A. J., Jr., Krenkel, P., & Shamas, J. (2015). Wastewater treatment & water reclamation. Reference module in earth systems and environmental sciences. B978-0-12-409548-9.09508-7. https://doi.org/10.1016/B978-0-12-409548-9.09508-7

  • Eom, T. H., Lee, C. H., Kim, J. H., & Lee, C. H. (2005). Development of an ion exchange system for plating wastewater treatment. Desalination, 180(1-3), 163–172.

    Article  CAS  Google Scholar 

  • EPA. (1999). Wastewater technology fact sheet—Sequencing batch reactors. UEP Agency, Editor.

    Google Scholar 

  • EPA. (2000). Wastewater technology fact sheet chemical precipitation. United States Environmental Protection Agency.

    Google Scholar 

  • EPA. (2002). Wastewater technology fact sheet—Disinfection for small systems.

    Google Scholar 

  • EPA. (2003). Wastewater technology fact sheet. Screening and grit removal.

    Google Scholar 

  • EPA’s, CSO (1999). Combined Sewer Overflow Technology Fact Sheet — Chlorine Disinfection

    Google Scholar 

  • Esakkimuthu, T., Sivakumar, D., & Akila, S. (2014). Application of nanoparticles in wastewater treatment. Pollution Research, 33(03), 567–571.

    CAS  Google Scholar 

  • Fatoki, O. S., Ayanda, O. S., Adekola, F. A., & Ximba, B. J. (2014). Sorption of triphenyltin chloride to n Fe3O4, fly ash, and n Fe3O4/fly ash composite material in seawater. Clean–Soil, Air, Water, 42(4), 472–479.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9(5-6), 750–760.

    Article  CAS  Google Scholar 

  • Gangadhar, G., Maheshwari, U., & Gupta, S. (2012). Application of nanomaterials for the removal of pollutants from effluent streams. Nanoscience Nanotechnology -Asia, 2(2), 140–150.

    Article  CAS  Google Scholar 

  • Grieger, K. D., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118(3-4), 165–183. https://doi.org/10.1016/j.jconhyd.2010.07.011

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling—An overview. RSC Advances, 2(16), 6380–6388.

    Article  CAS  Google Scholar 

  • Hassard, F., Biddle, J., Cartmell, E., Jefferson, B., Tyrrel, S., & Stephenson, T. (2015). Rotating biological contactors for wastewater treatment–A review. Process Safety and Environmental Protection, 94, 285–306.

    Article  CAS  Google Scholar 

  • Heins, W., & Peterson, D. (2005). Use of evaporation for heavy oil produced water treatment. Journal of Canadian Petroleum Technology, 44(01).

  • Henze, M., & Comeau, Y. (2008). Wastewater characterization. In M. Henze, M. C. M. van Loosdrecht, G. A. Ekama, & D. Brdjanovic (Eds.), Biological wastewater treatment: principles modelling and design. IWA Publishing.

    Chapter  Google Scholar 

  • Hoinkis, J., Deowan, S. A., Panten, V., Figoli, A., Huang, R. R., & Drioli, E. (2012). Membrane bioreactor (MBR) technology–A promising approach for industrial water reuse. Procedia Engineering, 33, 234–241.

    Article  CAS  Google Scholar 

  • Hoseinian, F. S., Rezai, B., Kowsari, E., Chinnappan, A., & Ramakrishna, S. (2020). Synthesis and characterization of a novel nanocollector for the removal of nickel ions from synthetic wastewater using ion flotation. Separation and Purification Technology, 240, 116639.

    Article  CAS  Google Scholar 

  • Hu, E. L., & Shaw, D. T. (1999). Synthesis and assembly. In Nanostructure Science and Technology (pp. 15–33). Springer.

    Chapter  Google Scholar 

  • Jain, K., Patel, A. S., Pardhi, V. P., & Flora, S. J. S. (2021). Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules (Basel, Switzerland), 26(6), 1797. https://doi.org/10.3390/molecules26061797

    Article  CAS  Google Scholar 

  • Janjua, M. R. S. A. (2019). Synthesis of Co3O4 nano aggregates by co-precipitation method and its catalytic and fuel additive applications. Open Chemistry, 17(1), 865–873. https://doi.org/10.1515/chem-2019-0100

    Article  CAS  Google Scholar 

  • Kanchan, S., Ogden, E., Kesheri, M., Skinner, A., Miliken, E., Lyman, D., Armstrong, J., Sciglitano, L., & Hampikian, G. (2024). COVID-19 hospitalizations and deaths predicted by SARS-CoV-2 levels in Boise, Idaho wastewater. The Science of the Total Environment, 907, 167742. https://doi.org/10.1016/j.scitotenv.2023.167742

    Article  CAS  Google Scholar 

  • Kesheri, M., Kanchan, S., & Richa, and Sinha, R.P. (2014). Isolation and in-silico analysis of Fe- superoxide dismutase in Nostoc commune. Gene, 553(2), 117–125. https://doi.org/10.1016/j.gene.2014.10.010

    Article  CAS  Google Scholar 

  • Kesheri, M., Kanchan, S., & Sinha, R. P. (2021). Isolation and in-silico analysis of antioxidants in response to temporal variations in the cyanobacterium Oscillatoria sp. Gene Reports, 23, 101023. https://doi.org/10.1016/j.genrep.2021.101023

    Article  CAS  Google Scholar 

  • Kesheri, M., Kanchan, S., & Sinha, R. P. (2022). Responses of antioxidants for resilience to temporal variations in the cyanobacterium Microcystis aeruginosa. South African Journal of Botany, 148, 190–199.

    Article  CAS  Google Scholar 

  • Kesheri, M., Kanchan, S., Srivastava, S., Ratna-Raj, R., Chittoori, B., Vaishampayan, A., Rastogi, R. P., Sinha, R. P., & Primerano, D. A. (2024). Ecology and environmental omics. In M. K. Gupta, P. Katara, S. Mondal, & R. L. Singh (Eds.), Integrative Omics: Concepts, Methodology, and Application, Chapter 19. Academic Press (Elsevier). https://doi.org/10.1016/B978-0-443-16092-9.00019-9

    Chapter  Google Scholar 

  • Kesheri, M., Richa, S., & R.P. (2011). Antioxidants as natural arsenal against multiple stresses in cyanobacteria. International Journal of Pharma and Biosciences, 2(2), B168–B187.

    Google Scholar 

  • Khan, J., Kusmahani, S. H., & Ruhi, S. (2020). Design and evaluation of sustained release matrix tablet of flurbiprofen by using hydrophilic polymer and natural gum. International Journal of Medical Toxicology & Legal Medicine, 23, 149–159.

    Article  Google Scholar 

  • Khan, S., Naushad, M., Al-Gheethi, A., & Iqbal, J. (2021). Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. Journal of Environmental Chemical Engineering, 9(5), 106160.

    Article  CAS  Google Scholar 

  • Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent--A review. Journal of environmental management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043

    Article  CAS  Google Scholar 

  • Kitanović, R. N., & Šušteršič, V. M. (2013). Wastewater treatment. Vojnotehnički glasnik/ Military Technical Courier, 61(3), 122–140.

    Article  Google Scholar 

  • Kumar, P. S., & Saravanan, A. (2017). Sustainable wastewater treatments in textile sector. In Sustainable fibres and textiles (pp. 323–346). Woodhead Publishing.

    Chapter  Google Scholar 

  • Kumari, S., Raturi, S., Kulshrestha, S., Chauhan, K., Dhingra, S., András, K., Thu, K., Khargotra, R., & Singh, T. (2023). A comprehensive review on various techniques used for synthesizing nanoparticles. Journal of Materials Research and Technologies, 27, 1739–1763.

    Article  CAS  Google Scholar 

  • Kunduru, K. R., Nazarkovsky, M., Farah, S., Pawar, R. P., Basu, A., & Domb, A. J .(2017). Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. Water Purification Technology, Elsevier 33-74.

  • Li, H., Wang, H., Liu, Q., Tan, Y., Jiang, N., & Lin, Y. (2016). Evaporation process for treating high-salinity industrial wastewater at low temperatures and ambient pressure. Desalination and Water Treatment, 57(56), 27048–27060.

    Article  CAS  Google Scholar 

  • Liu, X., & Ge, W. (2022). The emerging role of ultrasonic nanotechnology for diagnosing and treatment of diseases. Frontiers in Medicine, 9, 814986. https://doi.org/10.3389/fmed.2022.814986

    Article  Google Scholar 

  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, 147(1), 1–59.

    Article  CAS  Google Scholar 

  • Mehwish, H. M., Rajoka, M. S. R., Xiong, Y., Cai, H., Aadil, R. M., Mahmood, Q., He, Z., & Zhu, Q. (2021). Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. Journal of Environmental Chemical Engineering, 9(4), 105290.

    Article  CAS  Google Scholar 

  • Mitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: A review. Nanotechnology for Environmental Engineering, 2, 1–14.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2006). Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent. Journal of hazardous materials, 137(3), 1545–1553. https://doi.org/10.1016/j.jhazmat.2006.04.053

    Article  CAS  Google Scholar 

  • Moran, S. (2018). Clean water unit operation design: Physical processes. In S. Moran (Ed.), An Applied Guide to Water and Effluent Treatment Plant Design (pp. 69–100).

    Chapter  Google Scholar 

  • Morin-Crini, N., Lichtfouse, E., Fourmentin, M., Ribeiro, A. R. L., Noutsopoulos, C., Mapelli, F., et al. (2022). Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemical Letters, 20(2), 1333–1375.

    Article  CAS  Google Scholar 

  • Nakum, J., & Bhattacharya, D. (2022). Various green nanomaterials used for wastewater and soil treatment: A mini-review. Frontiers in Environmental Science, 9, 724814.

    Article  Google Scholar 

  • Naseem, T., & Durrani, T. (2021). The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology, 3, 59–75.

    Article  CAS  Google Scholar 

  • Noman, M., Shahid, M., Ahmed, T., Niazi, M. B. K., Hussain, S., Song, F., & Manzoor, I. (2020). Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environmental pollution (Barking, Essex : 1987), 257, 113514. https://doi.org/10.1016/j.envpol.2019.113514

    Article  CAS  Google Scholar 

  • Oberdörster, E., Zhu, S., Blickley, T. M., McClellan-Green, P., & Haasch, M. L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon, 44(6), 1112–1120.

    Article  Google Scholar 

  • Oghyanous, F. A. (2022). Nanoparticles in wastewater treatment. Water Conservation: Inevitable Strategy, 107.

  • Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10–21.

    Article  Google Scholar 

  • Pearce, G. (2007). Introduction to membranes: Filtration for water and wastewater treatment. Filtration and Separation, 44(2), 24–27.

    Article  CAS  Google Scholar 

  • Pirzadeh, B. (2022). Physical Wastewater Treatment. Wastewater Treatment, 3.

  • Pourzamani, H., Fadaei, S., & Amin, M. M. (2014). Release control of nanomagnetic particles in water and wastewater treatment. Anuário do Instituto de Geociências, 37(2), 223–231.

    Article  Google Scholar 

  • Prasad, K. S., Gandhi, P., & Selvaraj, K. (2014). Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Applied Surface Science, 317, 1052–1059.

    Article  CAS  Google Scholar 

  • Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058

    Article  CAS  Google Scholar 

  • Rao, L. N. (2014). Nanotechnological methodology for treatment of wastewater. International Journal of ChemTech Research, 6(4), 2529.

    CAS  Google Scholar 

  • Samer, M. (2015). Biological and chemical wastewater treatment processes. Wastewater treatment engineering, 150, 212.

    Google Scholar 

  • Sathya, K., Nagarajan, K., Carlin Geor Malar, G., Rajalakshmi, S., & Raja Lakshmi, P. (2022). A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Applied Water Science, 12(4), 70. https://doi.org/10.1007/s13201-022-01594-7

    Article  CAS  Google Scholar 

  • Shahid, M., McDonagh, A., Kim, J. H., & Shon, H. K. (2015). Magnetised titanium dioxide (TiO2) for water purification: Preparation, characterisation and application. Desalination and Water Treatment, 54(4-5), 979–1002.

    Article  CAS  Google Scholar 

  • Shahriari, T., & Shokouhi, M. (2015). Assessment of bio-trickling filter startup for treatment of industrial wastewater. International Journal of Environmental Research, 9(2), 769–776.

    CAS  Google Scholar 

  • Shaibu, S. E., Adekola, F. A., Adegoke, H. I., & Ayanda, O. S. (2014). A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites. Materials (Basel, Switzerland), 7(6), 4493–4507. https://doi.org/10.3390/ma7064493

    Article  Google Scholar 

  • Sharma, P., Dutta, D., Udayan, A., & Kumar, S. (2021). Industrial wastewater purification through metal pollution reduction employing microbes and magnetic nanocomposites. Journal of Environmental Chemical Engineering, 9(6), 106673.

    Article  CAS  Google Scholar 

  • Sharma, U., & Sharma, J. G. (2022). Nanotechnology for the bioremediation of heavy metals and metalloids. Journal of Applied Biology and Biotechnology, 10(5), 34–44.

    Article  CAS  Google Scholar 

  • Shruti, M., & N.K., Kesheri, M. (2016). Forecast Analysis of the potential and availability of renewable energy in India: A review. International Journal of Indian Electronic Electrical Engineering, 4(10), 17–22.

    Google Scholar 

  • Singh, A. K., Bhuyan, T., Maity, S., Mandal, T. K., & Bandyopadhyay, D. (2020). Magnetically actuated carbon soot nanoparticle-based catalytic CARBOts coated with Ni/Pt nanofilms for water detoxification and oil-spill recovery. ACS Applied Nano Material, 3(4), 3459–3470.

    Article  CAS  Google Scholar 

  • Singla, S., Kesheri, M., Kanchan, S., & Mishra, A. (2019). Impact of Diwali firecrackers on air quality in India and its effect on the health. International Journal of Pharma and Bioscience, 10((2), (B)), 155–169. https://doi.org/10.22376/ijpbs.2019.10.2.b155-169

    Article  CAS  Google Scholar 

  • Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167, 55–63.

    Article  CAS  Google Scholar 

  • Šostar-Turk, S., Petrinić, I., & Simonič, M. (2005). Laundry wastewater treatment using coagulation and membrane filtration. Resources, Conservation & Recycling, 44(2), 185–196.

    Article  Google Scholar 

  • Srivastava, N. K., & Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of hazardous materials, 151(1), 1–8. https://doi.org/10.1016/j.jhazmat.2007.09.101

    Article  CAS  Google Scholar 

  • Takmil, F., Esmaeili, H., Mousavi, S. M., & Hashemi, S. A. (2020). Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Advanced Powder Technology, 31(8), 3236–3245. https://doi.org/10.1016/j.apt.2020.06.015

    Article  CAS  Google Scholar 

  • Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical reviews in microbiology, 34(1), 43–69. https://doi.org/10.1080/10408410701710442

    Article  CAS  Google Scholar 

  • Tong, K., Zhang, Y., Liu, G., Ye, Z., & Chu, P. K. (2013). Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter. International Biodeterioration & Biodegradation, 84, 65–71.

    Article  CAS  Google Scholar 

  • Ukueje, W. E., Abam, F. I., & Obi, A. (2022). A perspective review on thermal conductivity of hybrid nanofluids and their application in automobile radiator cooling. Journal of Nanotechnology, 2022, 2187932.

    Article  Google Scholar 

  • Ullah, A., Hussain, S., Wasim, A., & Jahanzaib, M. (2020). Development of a decision support system for the selection of wastewater treatment technologies. The Science of the Total Environment, 731, 139158. https://doi.org/10.1016/j.scitotenv.2020.139158

    Article  CAS  Google Scholar 

  • Unuabonah, E. I., & Taubert, A. (2014). Clay–polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Applied Clay Science, 99, 83–92.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (1999). Wastewater technology fact sheet: Ozone disinfection.

    Google Scholar 

  • USEPA, United States Environmental Protection Agency. (1999). Wastewater technology fact sheet: Ultraviolet disinfection.

    Google Scholar 

  • USEPA, United States Environmental Protection Agency. (2000). Biosolids technology fact sheet: Centrifuge thickening and dewatering.

    Google Scholar 

  • Verma, R., Mantri, B., & Srivastava, A. K. (2015). Shape control synthesis, characterizations, mechanisms and optical properties of larg scaled metal oxide nanostructures of ZnO and TiO2. Advanced Materials Letters, 6(4), 324–333.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530–549.

    Article  CAS  Google Scholar 

  • Wang, L. K., Shammas, N. K., Williford, C., Chen, W. Y., & Sakellaropoulos, G. P. (2006). Evaporation processes. In Advanced Physicochemical Treatment Processes (Vol. 3, pp. 549–579). Humana Press.

    Chapter  Google Scholar 

  • Wang, S., Ng, C. W., Wang, W., Li, Q., & Hao, Z. (2012). Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chemical Engineering Journal, 197, 34–40.

    Article  CAS  Google Scholar 

  • Wang, W. K., Zhu, W., Mao, L., Zhang, J., Zhou, Z., & Zhao, G. (2019). Two-dimensional TiO2-g-C3N4 with both TiN and CO bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A. Journal of Colloid and Interface Science, 557, 227–235. https://doi.org/10.1016/j.jcis.2019.08.088

    Article  CAS  Google Scholar 

  • Woodard, F. (2001). Industrial waste treatment handbook. Elsevier.

    Google Scholar 

  • Xing, Z. P., & Sun, D. Z. (2009). Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process. Journal of Hazardous Materials, 168(2-3), 1264–1268. https://doi.org/10.1016/j.jhazmat.2009.03.008

    Article  CAS  Google Scholar 

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. The Science of the Total Environment, 424, 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  Google Scholar 

  • Ye, J., Gao, H., Wu, J., & Yu, R. (2021). Effects of ZnO nanoparticles on flocculation and sedimentation of activated sludge in wastewater treatment process. Environmental Research, 192, 110256. https://doi.org/10.1016/j.envres.2020.110256

    Article  CAS  Google Scholar 

  • Yilmaz, G., Lemaire, R., Keller, J., & Yuan, Z. (2008). Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnology and Bioengineering, 100(3), 529–541. https://doi.org/10.1002/bit.21774

    Article  CAS  Google Scholar 

  • Zelmanov, G., & Semiat, R. (2013). Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Separation Purification Technology, 103, 167–172.

    Article  CAS  Google Scholar 

  • Zelmanov, G., & Semiat, R. (2014). Boron removal from water and its recovery using iron (Fe+ 3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination, 333(1), 107–117.

    Article  CAS  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zhao, J., Baibuz, E., Vernieres, J., Grammatikopoulos, P., Jansson, V., Nagel, M., Steinhauer, S., Sowwan, M., Kuronen, A., Nordlund, K., & Djurabekova, F. (2016). ACS Nano, 10, 4684.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NOS wrote the manuscript. SK edited and reviewed it, and MK supervised, edited, and reviewed the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Minu Kesheri.

Ethics declarations

Ethical Approval

No humans or animals were actively involved in the study.

Consent to Participate

There were no human participants in the study.

Consent to Publish

All authors supported the publication of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, N.O., Kanchan, S. & Kesheri, M. Nanoparticles as Detoxifiers for Industrial Wastewater. Water Air Soil Pollut 235, 214 (2024). https://doi.org/10.1007/s11270-024-07016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07016-5

Keywords

Navigation