Skip to main content
Log in

Camphoric Acid in Nanomagnetic Photocatalyst Synthesis: Direct and Indirect Visible Light Photocatalytic Degradation of PCBs

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, camphoric acid was used as a carbon source in the synthesis of the catalyst for the first time. The new Fe3O4/C/SiO2/TiO2 and Fe3O4/C/TiO2 magnetic nano-semiconductors were synthesized and used for hydrogen peroxide-free photodegradation of polychlorinated biphenyls (PCBs) in transformer oil (Askarel) and significant PCB 138 in aqueous solutions under visible light irradiation. Also, interestingly, direct degradation was carried out for Askarel oil in addition to the extraction-degradation method. These nano-reduced band gap semiconductors (2.10 eV) were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherm analyses, and vibrating sample magnetometer (VSM). The high photocatalytic performance compared to Fe3O4/C/TiO2 and P25 in direct and indirect (extraction-degradation) degradation besides its convenient magnetic recovery are the main advantages of Fe3O4/C/SiO2/TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data is contained within the article, and the materials used in the study are commercially available and can be purchased from the relevant firms.

References

  • Aliyu, M. H., Alio, A. P., & Salihu, H. M. (2010). To breastfeed or not to breastfeed: a review of the impact of lactational exposure to polychlorinated biphenyls (PCBs) on infants. Journal of Environmental Health, 73, 8–15.

    PubMed  CAS  Google Scholar 

  • Bagheri, M., Kazemi, F., Zand, Z., & Kaboudin, B. (2024). Highly chemoselective and fast practical visible photoreduction of nitroaromatic compounds to aromatic amines and amides using a self-assembled triad TiO2-TEOA-NC (LMCT/EDA) complex system. Green Chemistry, Accepted Paper.

  • Chen, D., & Ray, A. K. (1999). Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental, 23, 143–157.

    Article  Google Scholar 

  • Chen, L., Tang, X., Shen, C., Chen, C., & Chen, Y. (2012). Photosensitized degradation of 2, 4′, 5-trichlorobiphenyl (PCB 31) by dissolved organic matter. Journal of Hazardous Materials, 201, 1–6.

    Article  PubMed  ADS  Google Scholar 

  • Chhabra, V., Pillai, V., Mishra, B., Morrone, A., & Shah, D. (1995). Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles. Langmuir, 11, 3307–3311.

    Article  CAS  Google Scholar 

  • Chu, W., Chan, K., Kwan, C., & Jafvert, C. (2005). Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials. Environmental Science & Technology, 39, 9211–9216.

    Article  ADS  CAS  Google Scholar 

  • Chu, W., Jafvert, C. T., Diehl, C. A., Marley, K., & Larson, R. A. (1998). Phototransformations of polychlorobiphenyls in Brij 58 micellar solutions. Environmental Science & Technology, 32, 1989–1993.

    Article  ADS  CAS  Google Scholar 

  • Chu, W., & Kwan, C. (2003a). Reactor design and kinetics study of 4, 4′-dichlorobiphenyl photodecay in surfactant solution by using a photosensitizer and hydrogen source. Water Research, 37, 2442–2448.

    Article  PubMed  CAS  Google Scholar 

  • Chu, W., & Kwan, C. (2003b). Remediation of contaminated soil by a solvent/surfactant system. Chemosphere, 53, 9–15.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chu, W., & Ma, C. (1998). Reaction kinetics of UV-decolourization for dye materials. Chemosphere, 37, 961–974.

    Article  ADS  CAS  Google Scholar 

  • Di Guardo, A., Terzaghi, E., Raspa, G., Borin, S., Mapelli, F., Chouaia, B., Zanardini, E., Morosini, C., Colombo, A., & Fattore, E. (2017). Differentiating current and past PCB and PCDD/F sources: The role of a large contaminated soil site in an industrialized city area. Environmental Pollution, 223, 367–375.

    Article  PubMed  Google Scholar 

  • Gad-Allah, T. A., Kato, S., Satokawa, S., & Kojima, T. (2007). Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite. Solid State Sciences, 9, 737–743.

    Article  ADS  CAS  Google Scholar 

  • Han, C., Yang, M.-Q., Weng, B., & Xu, Y.-J. (2014). Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Physical Chemistry Chemical Physics, 16, 16891–16903.

    Article  PubMed  CAS  Google Scholar 

  • Han, J. S., Hur, N., Choi, B., & Min, S. H. (2003). Removal of phosphorus using chemically modified lignocellulosic materials. In In 6th Inter-Regional Conference on Environment-Water “Land and Water Use Planning and Management” Albacete, Spain (p. 11). CREA Publishing.

    Google Scholar 

  • Hu, J., Wang, C., Dai, J., Teng, N., Wang, S., Zhang, L., Jiang, Y., & Liu, X. (2021). Epoxy resin with excellent ultraviolet resistance and mechanical properties derived from renewable camphoric acid. Polymers for Advanced Technologies, 32, 3701–3713.

    Article  CAS  Google Scholar 

  • Huang, Q., & Hong, C.-S. (2000). TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere, 41, 871–879.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Izadifard, M., Langford, C. H., & Achari, G. (2010). Photocatalytic dechlorination of PCB 138 using leuco-methylene blue and visible light; reaction conditions and mechanisms. Journal of Hazardous Materials, 181, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Jantunen, A., Koelmans, A., & Jonker, M. (2010). Modeling polychlorinated biphenyl sorption isotherms for soot and coal. Environmental Pollution, 158, 2672–2678.

    Article  PubMed  CAS  Google Scholar 

  • Kamarehie, B., Asilian Mahabadi, H., & Joneidi Jafari, A. (2014). Destruction and dechlorination of aroclor1254 in real waste transformer oil using microwave irradiation, microwave absorbent and reactive materials. Iranian Journal of Toxicology, 8, 1114–1123.

    Google Scholar 

  • Leaes, F., Daniel, A., Mello, G., Battisti, V., Bogusz, S., Jr., Emanuelli, T., Fries, L., & Costabeber, I. (2006). Degradation of polychlorinated biphenyls (PCBs) by Staphylococcus xylosus in liquid media and meat mixture. Food and Chemical Toxicology, 44, 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Lepine, F., & Masse, R. (1990). Degradation pathways of PCB upon gamma irradiation. Environmental Health Perspectives, 89, 183–187.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li, S., Liang, W., Zheng, F., Zhou, H., Lin, X., & Cai, J. (2016). Lysine surface modified Fe3O4@ SiO2@TiO2 microspheres-based preconcentration and photocatalysis for in situ selective determination of nanomolar dissolved organic and inorganic phosphorus in seawater. Sensors and Actuators B: Chemical, 224, 48–54.

    Article  CAS  Google Scholar 

  • Li, Y., Jiang, Y., Peng, S., & Jiang, F. (2010). Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. Journal of Hazardous Materials, 182, 90–96.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y., Chen, Y., Huang, C., & Wu, M. (2006). Photocatalysis of 2, 2′, 3, 4, 4′, 5′-hexachlorobiphenyl and its intermediates using various catalytical preparing methods. Journal of Hazardous Materials, 136, 902–910.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y.-J., Teng, L.-S., Lee, A., & Chen, Y.-L. (2004). Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls. Chemosphere, 55, 879–884.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Liu, C., Zhang, L., Fan, C., Xu, F., Chen, K., & Gu, X. (2017). Temporal occurrence and sources of persistent organic pollutants in suspended particulate matter from the most heavily polluted river mouth of Lake Chaohu, China. Chemosphere, 174, 39–45.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Long, Y.-Y., Zhang, C., Du, Y., Tao, X.-Q., & Shen, D.-S. (2014). Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron. Environmental Science and Pollution Research, 21, 4783–4792.

    Article  PubMed  CAS  Google Scholar 

  • Maghami, A., Gholipour-Zanjani, N., Khorasheh, F., & Arjmand, M. (2022). A catalyzed method to remove polychlorinated biphenyls from contaminated transformer oil. Environmental Science and Pollution Research, 1–15.

  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, 147, 1–59.

    Article  CAS  Google Scholar 

  • Mangayayam, M., Kiwi, J., Giannakis, S., Pulgarin, C., Zivkovic, I., Magrez, A., & Rtimi, S. (2017). FeOx magnetization enhancing E. coli inactivation by orders of magnitude on Ag-TiO2 nanotubes under sunlight. Applied Catalysis B: Environmental, 202, 438–445.

    Article  CAS  Google Scholar 

  • Manzano, M., Perales, J., Sales, D., & Quiroga, J. (2004). Using solar and ultraviolet light to degrade PCBs in sand and transformer oils. Chemosphere, 57, 645–654.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Merabet, S., Bouzaza, A., & Wolbert, D. (2009). Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process—Influence of some operating parameters. Journal of Hazardous Materials, 166, 1244–1249.

    Article  PubMed  CAS  Google Scholar 

  • Miao, X.-S., Chu, S.-G., & Xu, X.-B. (1999). Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere, 39, 1639–1650.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mincher, B. J., & Arbon, R. E. (1996). Decomposition of PCBS in oils using gamma radiolysis a treatability study-Final report. Idaho National Lab.(INL).

    Google Scholar 

  • Mohammadi, A., & Mousavi, S. H. (2018). Enhanced photocatalytic performance of TiO2 by β-cyclodextrin for the degradation of organic dyes. Journal of Water and Environmental Nanotechnology, 3, 254–264.

    CAS  Google Scholar 

  • Moopam, R. (1999). Manual of oceanographic observations and pollutant analysis methods. ROPME. Kuwait, 1, 20.

    Google Scholar 

  • Müller, M., Polder, A., Brynildsrud, O., Karimi, M., Lie, E., Manyilizu, W., Mdegela, R., Mokiti, F., Murtadha, M., & Nonga, H. (2017). Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania. Environmental Research, 154, 425–434.

    Article  PubMed  ADS  Google Scholar 

  • Nsengiyumva, O., & Miller, S. A. (2019). Synthesis, characterization, and water-degradation of biorenewable polyesters derived from natural camphoric acid. Green Chemistry, 21, 973–978.

    Article  CAS  Google Scholar 

  • Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). A review on TiO2-based Z-scheme photocatalysts. Chinese Journal of Catalysis, 38, 1936–1955.

    Article  CAS  Google Scholar 

  • Raja, P., Bozzi, A., Mansilla, H., & Kiwi, J. (2005). Evidence for superoxide-radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4-hydroxyphenylmethylcarbinol). Journal of photochemistry and photobiology A: Chemistry, 169, 271–278.

    Article  CAS  Google Scholar 

  • Razeghi, R., Kazemi, F., Nikfarjam, N., Shariati, Y., & Kaboudin, B. (2021). Visible photo-induced catalyst-free polymerization via in situ prepared dibromide. European Polymer Journal, 144, 110195.

    Article  CAS  Google Scholar 

  • Safa, S., Mirzaei, M., Kazemi, F., Ghaneian, M. T., & Kaboudin, B. (2019). Study of visible-light photocatalytic degradation of 2, 4-dichlorophenoxy acetic acid in batch and circulated-mode photoreactors. Journal of Environmental Health Science and Engineering, 17, 233–245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai, S.-I., Hayakawa, K., Takatsuki, H., & Kawakami, I. (2001). Dioxin-like PCBs released from waste incineration and their deposition flux. Environmental Science & Technology, 35, 3601–3607.

    Article  ADS  CAS  Google Scholar 

  • Salamat, S., Younesi, H., & Bahramifar, N. (2017). Synthesis of magnetic core–shell Fe3O4@ TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Advances, 7, 19391–19405.

    Article  ADS  CAS  Google Scholar 

  • Serra, A. C., & da Silva Corrêa, C. M. (1991). An interesting rearrangement of unsaturated sulphonate and thiosulphonate esters. Tetrahedron letters, 32, 6653–6654.

    Article  CAS  Google Scholar 

  • Shaban, Y. A., El Sayed, M. A., El Maradny, A. A., Al Farawati, R. K., Al Zobidi, M. I., & Khan, S. U. (2016). Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles. Applied Surface Science, 365, 108–113.

    Article  ADS  CAS  Google Scholar 

  • Silva, A. M., Nouli, E., Xekoukoulotakis, N. P., & Mantzavinos, D. (2007). Effect of key operating parameters on phenols degradation during H2O2-assisted TiO2 photocatalytic treatment of simulated and actual olive mill wastewaters. Applied Catalysis B: Environmental, 73, 11–22.

    Article  CAS  Google Scholar 

  • Stella, T., Covino, S., Čvančarová, M., Filipová, A., Petruccioli, M., D’Annibale, A., & Cajthaml, T. (2017). Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, 324, 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Tajik, R., Asilian, H., Khavanin, A., Jonidi, A., Eshrati, B., & Soleimanian, A. (2012). Decomposition of Askarel oil by microwave radiation and H2O2/TiO2 agents in order to reduce occupational hazards. Iranian Journal of Toxicology, 6, 660–667.

    Google Scholar 

  • Tang, T., Zheng, Z., Wang, R., Huang, K., Li, H., Tao, X., Dang, Z., Yin, H., & Lu, G. (2018). Photodegradation behaviors of polychlorinated biphenyls in methanol by UV-irradiation: Solvent adducts and sigmatropic arrangement. Chemosphere, 193, 861–868.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Verma, A., Prakash, N., & Toor, A. (2014a). An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: Durability studies. Chemosphere, 109, 7–13.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Verma, A., Prakash, N. T., & Toor, A. P. (2014b). Photocatalytic degradation of herbicide isoproturon in TiO2 aqueous suspensions: study of reaction intermediates and degradation pathways. Environmental Progress & Sustainable Energy, 33, 402–409.

    Article  CAS  Google Scholar 

  • Wang, R., Ren, D., Xia, S., Zhang, Y., & Zhao, J. (2009). Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 169, 926–932.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., & Lim, T.-T. (2010). Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Applied Catalysis B: Environmental, 100, 355–364.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhou, D., Wang, Y., Zhu, X., & Jin, S. (2011). Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. Journal of Environmental Sciences, 23, 1286–1292.

    Article  CAS  Google Scholar 

  • Wong, K., & Wong, P. (2006). Degradation of polychlorinated biphenyls by UV-catalyzed photolysis. Human and Ecological Risk Assessment: An International Journal, 12, 259–269.

    Article  CAS  Google Scholar 

  • Yang, M.-Q., Zhang, N., Pagliaro, M., & Xu, Y.-J. (2014). Artificial photosynthesis over graphene–semiconductor composites. Are we getting better? Chemical Society Reviews, 43, 8240–8254.

    Article  PubMed  CAS  Google Scholar 

  • Yao, Y., Kakimoto, K., Ogawa, H. I., Kato, Y., Kadokami, K., & Shinohara, R. (2000). Further study on the photochemistry of non-ortho substituted PCBs by UV irradiation in alkaline 2-propanol. Chemosphere, 40, 951–956.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yarovaya, O. I., Baranova, D. V., Sokolova, A. S., Nemolochnova, A. G., Sal’nikova, O. P., Fat’anova, A. V., Rogachev, A. D., Volobueva, A. S., Zarubaev, V. V., Pokrovsky, A. G., & Salakhutdinov, N. F. (2023). Synthesis of N-heterocyclic amides based on (+)-camphoric acid and study of their antiviral activity and pharmacokinetics. Russian Chemical Bulletin, 72, 807–818.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yousefi, S. R., Alshamsi, H. A., Amiri, O., & Salavati-Niasari, M. (2021). Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. Journal of Molecular Liquids, 337, 116405.

    Article  CAS  Google Scholar 

  • Yousefi, S. R., Amiri, O., & Salavati-Niasari, M. (2019). Control sonochemical parameter to prepare pure Zn0. 35Fe2. 65O4 nanostructures and study their photocatalytic activity. Ultrasonics Sonochemistry, 58, 104619.

    Article  PubMed  CAS  Google Scholar 

  • Yu, L., Achari, G., & Langford, C. H. (2013). LED-based photocatalytic treatment of pesticides and chlorophenols. Journal of Environmental Engineering, 139, 1146–1151.

    Article  CAS  Google Scholar 

  • Yu, L., Izadifard, M., Achari, G., & Langford, C. H. (2013). Electron transfer sensitized photodechlorination of surfactant solubilized PCB 138. Chemosphere, 90, 2347–2351.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zanaroli, G., Negroni, A., Vignola, M., Nuzzo, A., Shu, H. Y., & Fava, F. (2012). Enhancement of microbial reductive dechlorination of polychlorinated biphenyls (PCBs) in a marine sediment by nanoscale zerovalent iron (NZVI) particles. Journal of Chemical Technology & Biotechnology, 87, 1246–1253.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hu, S., Baig, S. A., Tang, J., & Xu, X. (2012). Catalytic dechlorination of Aroclor 1242 by Ni/Fe bimetallic nanoparticles. Journal of Colloid and Interface Science, 385, 160–165.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zhou, Q., Li, J., Wang, M., & Zhao, D. (2016). Iron-based magnetic nanomaterials and their environmental applications. Critical Reviews in Environmental Science and Technology, 46, 783–826.

    Article  Google Scholar 

  • Zhu, X., Wang, Y., Qin, W., Zhang, S., & Zhou, D. (2016). Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO2 catalyst. Chemosphere, 144, 628–634.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zhu, X., Zhou, D., Cang, L., & Wang, Y. (2012a). TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants. Journal of Soils and Sediments, 12, 376–385.

    Article  CAS  Google Scholar 

  • Zhu, X., Zhou, D., Wang, Y., Cang, L., Fang, G., & Fan, J. (2012). Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation. Journal of Soils and Sediments, 12, 1371–1379.

    Article  CAS  Google Scholar 

  • Zhu, X.-D., Wang, Y.-J., Sun, R.-J., & Zhou, D.-M. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 92, 925–932.

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Zanjan Regional Electric Company for the financial support contract number. We thank the Institute for Advanced Studies in Basic Sciences (IASBS) Research Council for providing the laboratory facilities. Comments from the anonymous reviewers are appreciated.

Funding

This study was supported by the Zanjan Regional Electric Company for the financial support contract number 96/300/107, Institute for Advanced Studies in Basic Sciences (IASBS) and International Campus of Shahid Sadoughi University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Foad Kazemi. Methodology: Sorur Safa, and Majid Mirzaei. Formal analysis and investigation: Sorur Safa, Majid Mirzaei, Zahra Zand, and Yadollah Shariati. Writing—original draft: Sorur Safa, Majid Mirzaei. Writing—review and editing: Sorur Safa, Zahra Zand, Foad Kazemi. Resources: Sorur Safa. Supervision: Foad Kazemi.

Corresponding author

Correspondence to Foad Kazemi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1094 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, S., Mirzaei, M., Shariati, Y. et al. Camphoric Acid in Nanomagnetic Photocatalyst Synthesis: Direct and Indirect Visible Light Photocatalytic Degradation of PCBs. Water Air Soil Pollut 235, 137 (2024). https://doi.org/10.1007/s11270-024-06956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06956-2

Keywords

Navigation