Skip to main content
Log in

Impact of Calcination Temperature on Structural and Optical Properties and Photocatalytic Efficiency of Ni0.33Cu0.33Zn0.33Fe2O4 Nanoparticles in Aniline Degradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the structural and optical properties as well as the photocatalytic performance of Ni0.33Cu0.33Zn0.33Fe2O4 nanoparticles were investigated. These nanoparticles were prepared using the co-precipitation method by applying different calcination temperatures (773, 823, 873, 923, and 973 K). The X-ray diffraction analysis confirmed the presence of the cubic spinel ferrite phase without secondary phases. As the calcination temperature increased from 773 to 973 K, the crystallite and particle sizes of Ni0.33Cu0.33Zn0.33Fe2O4 nanoparticles increased from 12.84 to 20.19 nm and from 19.13 to 43.83 nm, respectively. Among the prepared samples, Ni0.33Cu0.33Zn0.33Fe2O4 nanoparticles calcined at 873 K revealed the highest value of band gap energy along with the lowest values of Urbach energy, refractive index, and optical and static dielectric constant. Additionally, the prepared samples were applied as photocatalysts for the degradation of aniline under ultraviolet irradiation. Improved photocatalytic performance was revealed by Ni0.33Cu0.33Zn0.33Fe2O4 nanoparticles calcined at 873 K. This was attributed to the slowest recombination rate of the electron–hole pairs as revealed from PL analysis. To further improve the photodegradation rate, the degradation reaction was studied by varying the catalyst amount, aniline concentration, pH mediums, and reaction temperatures. Increasing the pH and temperature boosted the degradation rate. Finally, the degradation reaction was carried out by incorporating Ni0.33Cu0.33Zn0.33Fe2O4 nanoparticles calcined at 873 K with different weight % of carbon quantum dots. The results revealed enhanced photocatalytic activity with k = 30 × 10−4 min−1 was achieved after combining 10 weight % of carbon quantum dots with Ni0.33Cu0.33Zn0.33Fe2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

We acknowledge that the data used in this study will be made available upon request.

Abbreviations

XRD :

X-ray diffraction

TEM :

Transmission electron microscope

HRTEM :

High-resolution transmission electron microscope

SAED :

Selected area electron diffraction

PL :

Photoluminescence

CQDs :

Carbon quantum dots

wt. % :

Weight percentages

a :

Lattice parameter

D XRD :

Average crystallite size

D TEM :

Particle size

E g :

Optical band gap energy

h \(\upnu\) :

Photon energy

(E g)d :

Direct band gap energy

(E g)i :

Indirect band gap energy

E U :

Urbach energy

σ st :

Steepness parameter

E VB :

Energy of valence band

E CB :

Energy of conduction band

n :

Refractive index

ε :

Optical dielectric constant

ε o :

Static dielectric constant

\({E}_{{\text{a}}}\) :

Activation energy

A :

Arrhenius factor

ΔH :

Enthalpy change

ΔS :

Entropy change

ΔG :

Gibbs free energy

References

  • Abdel Maksoud, M. I. A., El-Sayyad, G. S., El-Khawaga, A. M., Abd Elkodous, M., Abokhadra, A., Elsayed, M. A., Gobara, M., Soliman, L. I., El-Bahnasawy, H. H., & Ashour, A. H. (2020). Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. Journal of Hazardous Materials, 399, 123000. https://doi.org/10.1016/j.jhazmat.2020.123000

    Article  PubMed  CAS  Google Scholar 

  • Ahmadian-Fard-Fini, S., Salavati-Niasari, M., & Safardoust-Hojaghan, H. (2017). Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor. Journal of Materials Science: Materials in Electronics, 28(21), 16205–16214. https://doi.org/10.1007/s10854-017-7522-1

    Article  CAS  Google Scholar 

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2011). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A review. Water, Air, & Soil Pollution, 215(1–4), 3–29. https://doi.org/10.1007/s11270-010-0456-3

    Article  ADS  CAS  Google Scholar 

  • Alhejji, A., Kuriqi, A., Jurasz, J., & Abo-Elyousr, F. K. (2021). Energy harvesting and water saving in arid regions via solar PV accommodation in irrigation canals. Energies, 14(9), 2620. https://doi.org/10.3390/en14092620

    Article  Google Scholar 

  • Amiri, R., Rezaei, A., Fattahi, N., Pirsaheb, M., Rodríguez-Chueca, J., & Moradi, M. (2022). Carbon quantum dots decorated Ag/CuFe2O4 for persulfate-assisted visible light photocatalytic degradation of tetracycline: A comparative study. Journal of Water Process Engineering, 47, 102742. https://doi.org/10.1016/j.jwpe.2022.102742

    Article  Google Scholar 

  • Anani, M., Mathieu, C., Lebid, S., Amar, Y., Chama, Z., & Abid, H. (2008). Model for calculating the refractive index of a III-V semiconductor. Computational Materials Science, 41(4), 570–575. https://doi.org/10.1016/j.commatsci.2007.05.023

    Article  CAS  Google Scholar 

  • Ansari, A. A., Abushad, M., Arshad, M., Naseem, S., Ahmed, H., Husain, S., & Khan, W. (2021). Microstructure, optical and dielectric properties of cobalt-doped zinc ferrite nanostructures. Journal of Materials Science: Materials in Electronics, 32(17), 21988–22002. https://doi.org/10.1007/s10854-021-06647-2

    Article  CAS  Google Scholar 

  • Aridi, A., Awad, R., & Khalaf, A. (2021). Synthesis and characterization of ZnFe2O4/Mn2O3 nanocomposites. Applied Physics A, 127(3), 1–16.

    Article  Google Scholar 

  • Aridi, A., Naoufal, D., El-Rassy, H., & Awad, R. (2022). Photocatalytic activity of ZnFe2O4/NiO nanocomposites carried out under UV irradiation. Ceramics International, 48(20), 30905–30916. https://doi.org/10.1016/j.ceramint.2022.07.046

    Article  CAS  Google Scholar 

  • Aridi, A., Naoufal, D., El-Rassy, H., & Awad, R. (2023). Preparation and characterization of ZnFe2O4/Mn2O3 nanocatalysts for the degradation of nitrobenzene. Chemistry Africa, 6, 1913–1926. https://doi.org/10.1007/s42250-023-00609-3

    Article  CAS  Google Scholar 

  • Aslinjensipriya, A., Reena, R. S., Ragu, R., Infantiya, S. G., Mangalam, G., Raj, C. J., & Das, S. J. (2022). Exploring the influence of tin in micro-structural, magneto-optical and antimicrobial traits of nickel oxide nanoparticles. Surfaces and Interfaces, 28, 101605. https://doi.org/10.1016/j.surfin.2021.101605

    Article  CAS  Google Scholar 

  • Bajaj, N. S., & Joshi, R. A. (2021). Energy materials: Synthesis and characterization techniques. In Energy Materials, pp. 61–82. Elsevier. https://doi.org/10.1016/B978-0-12-823710-6.00019-4

  • Barde, N. P., Rathod, V. R., Solanki, P. S., Shah, N. A., & Bardapurkar, P. P. (2022). On the structural, refractive index and energy bandgap based optical properties of lithium ferrite nanoparticles dispersed in silica matrix. Applied Surface Science Advances, 11, 100302. https://doi.org/10.1016/j.apsadv.2022.100302

    Article  Google Scholar 

  • Basma, H., Al Boukhari, J., Abd Al Nabi, M., Aridi, A., Sayed Hassan, R., Naoufal, D., Roumie, M., & Awad, R. (2022). Enhancement of the magnetic and optical properties of Ni0. 5Zn0. 5Fe2O4 nanoparticles by ruthenium doping. Applied Physics A, 128(5), 409. https://doi.org/10.1007/s00339-022-05552-7

  • Bhat, A. P., & Gogate, P. R. (2021). Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. Journal of Hazardous Materials, 403, 123657. https://doi.org/10.1016/j.jhazmat.2020.123657

    Article  PubMed  CAS  Google Scholar 

  • Chand, P., Vaish, S., & Kumar, P. (2017). Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Physica b: Condensed Matter, 524, 53–63. https://doi.org/10.1016/j.physb.2017.08.060

  • Chavan, P., & Naik, L. R. (2017). Investigation of energy band gap and conduction mechanism of magnesium substituted nickel ferrite nanoparticles. Physica Status Solidi (a), 214(9), 1700077.

    Article  ADS  Google Scholar 

  • Chebbi, M., Mansouri, S., Hcini, S., Ghiloufi, I., Mimouni, A., & Mir, L. E. (2024). Investigating the impact of calcination temperature on the structural and optical properties of chromium-substituted Mg–Co ferrite nanoparticles. Journal of Molecular Structure, 1295, 136740. https://doi.org/10.1016/j.molstruc.2023.136740

    Article  CAS  Google Scholar 

  • Chehade, W., Basma, H., Abdallah, A. M., Sayed Hassan, R., & Awad, R. (2022). Synthesis and magneto-optical studies of novel Ni0.5Zn0.5Fe2O4/ Zn095Co005O nanocomposite as a candidate for photocatalytic applications. Ceramics Int, 48(1), 1238–1255. https://doi.org/10.1016/j.ceramint.2021.09.209

    Article  CAS  Google Scholar 

  • Chen, C.-C., Jaihindh, D., Hu, S.-H., & Fu, Y.-P. (2017). Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@SiO2@TiO2@Ag and their photocatalytic activities. Journal of Photochemistry and Photobiology a: Chemistry, 334, 74–85. https://doi.org/10.1016/j.jphotochem.2016.11.005

    Article  CAS  Google Scholar 

  • Choodamani, C., Nagabhushana, G. P., Rudraswamy, B., & Chandrappa, G. T. (2014). Thermal effect on magnetic properties of Mg-Zn ferrite nanoparticles. Materials Letters, 116, 227–230. https://doi.org/10.1016/j.matlet.2013.11.024

    Article  CAS  Google Scholar 

  • Das, B. C., Alam, F., & Akther, A. K. M. H. (2020). The crystallographic, magnetic, and electrical properties of Gd3+-substituted Ni–Cu–Zn mixed ferrites. Journal of Physics and Chemistry of Solids, 142, 109433. https://doi.org/10.1016/j.jpcs.2020.109433

    Article  CAS  Google Scholar 

  • Dave, P. N., & Sirach, R. (2022). An efficient nanocatalyst cobalt copper zinc ferrite for the thermolysis of ammonium nitrate. ACS Omega, 7(48), 43784–43792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dave, P., Thakkar, R., Sirach, R., Badgujar, D., Deshpande, M., & Chaturvedi, S. (2022). Nano size NiCuZnFe2O4 tri metal spinel ferrite: Synthesis, characterizations and additive for thermolysis of ammonium perchlorate. ChemistrySelect, 7(5), e202103846.

    Article  CAS  Google Scholar 

  • Dinkar, D. K., Das, B., Gopalan, R., & Dehiya, B. S. (2018). Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles. Materials Chemistry and Physics, 218, 70–76. https://doi.org/10.1016/j.matchemphys.2018.07.020

    Article  CAS  Google Scholar 

  • Elthair, N. A., Mustafa, E. M., & Elbadawi, A. A. (2020). The electrical and optical properties of Zn. 05Li2xMg0. 5-xFe2O4 lithium doped nanoparticle prepared by coprecipitation method. Open Journal of Applied Sciences, 10(9), 551–560.

    Article  ADS  CAS  Google Scholar 

  • Fang, L., Huang, T., Lu, H., Wu, X.-L., Chen, Z., Yang, H., Wang, S., Tang, Z., Li, Z., Hu, B., & Wang, X. (2023). Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications. Biochar, 5(1), 42. https://doi.org/10.1007/s42773-023-00237-7

    Article  ADS  CAS  Google Scholar 

  • Fang, M., Tan, X., Liu, Z., Hu, B., & Wang, X. (2021). Recent progress on metal-enhanced photocatalysis: A review on the mechanism. Research, 2021. Article ID: 9794329 https://doi.org/10.34133/2021/9794329

  • Fardood, S. T., Atrak, K., & Ramazani, A. (2017). Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. Journal of Materials Science: Materials in Electronics, 28(14), 10739–10746. https://doi.org/10.1007/s10854-017-6850-5

    Article  CAS  Google Scholar 

  • Gao, W., Zhang, S., Wang, G., Cui, J., Lu, Y., Rong, X., & Gao, C. (2022). A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International, 48(24), 35986–35999. https://doi.org/10.1016/j.ceramint.2022.10.116

    Article  CAS  Google Scholar 

  • Grewal, J. K., Kaur, M., Mandal, K., & Sharma, V. K. (2022). Carbon quantum dot-titanium doped strontium ferrite nanocomposite: Visible light active photocatalyst to degrade nitroaromatics. Catalysts, 12(10), 1126. https://doi.org/10.3390/catal12101126

    Article  CAS  Google Scholar 

  • Harrabi, D., Hcini, S., Dhahri, J., Wederni, M. A., Alshehri, A. H., Mallah, A., Khirouni, K., & Bouazizi, M. L. (2023). Study of structural and optical properties of Cu–Cr substituted Mg–Co spinel ferrites for optoelectronic applications. Journal of Inorganic and Organometallic Polymers and Materials, 33(1), 47–60. https://doi.org/10.1007/s10904-022-02484-w

    Article  CAS  Google Scholar 

  • Harzali, H., Marzouki, A., Saida, F., Megriche, A., & Mgaidi, A. (2018). Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4 (R = Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation. Journal of Magnetism and Magnetic Materials, 460, 89–94. https://doi.org/10.1016/j.jmmm.2018.03.062

  • Hou, W., & Wang, Z. (2015). Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method. Materials Science and Engineering: B, 199, 57–61. https://doi.org/10.1016/j.mseb.2015.04.016

    Article  CAS  Google Scholar 

  • Hsiang, H.-I., Kuo, W.-C., & Hsi, C.-S. (2017). Sintering and cooling atmosphere effects on the microstructure, magnetic properties and DC superposition behavior of NiCuZn ferrites. Journal of the European Ceramic Society, 37(5), 2123–2128. https://doi.org/10.1016/j.jeurceramsoc.2017.01.025

    Article  CAS  Google Scholar 

  • Huang, Q., Zhang, J., He, Z., Shi, P., Qin, X., & Yao, W. (2017). Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation. Chemical Engineering Journal, 313, 1088–1098. https://doi.org/10.1016/j.cej.2016.11.002

    Article  CAS  Google Scholar 

  • Jin, R., Qiu, Z., Cheng, W., & Jin, X. (2020). Photocatalytic degradation of aniline by magnetic nanomaterials Fe3O4@SiO2@BiO1.8·0.04H2O/Ag3PO4. Chemical Physics Letters, 755, 137747.

    Article  CAS  Google Scholar 

  • John, S. P., & Mathew, M. J. (2021). Determination of ferrimagnetic and superparamagnetic components of magnetization and the effect of particle size on structural, magnetic and hyperfine properties of Mg05Zn05Fe2O4 nanoparticles. Journal of Alloys and Compounds, 869, 159242. https://doi.org/10.1016/j.jallcom.2021.159242

  • Kadi, M. W., & Mohamed, R. M. (2014). Synthesis and optimization of cubic NiFe2O4 nanoparticles with enhanced saturation magnetization. Ceramics International, 40(1), 227–232. https://doi.org/10.1016/j.ceramint.2013.05.128

    Article  CAS  Google Scholar 

  • Khan, M., Assal, M. E., Tahir, M. N., Khan, M., Ashraf, M., Hatshan, M. R., Khan, M., Varala, R., Badawi, N. M., & Adil, S. F. (2022). Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. Journal of Saudi Chemical Society, 26(6):101544. https://doi.org/10.1016/j.jscs.2022.101544

  • Liu, X., Li, Y., Chen, Z., Yang, H., Wang, S., Tang, Z., & Wang, X. (2023). Recent progress of covalent organic frameworks membranes: Design, synthesis, and application in water treatment. Eco-Environment & Health, 2(3), 117–130. https://doi.org/10.1016/j.eehl.2023.07.001

    Article  Google Scholar 

  • Loganathan, A., & Kumar, K. (2016). Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures. Applied Nanoscience, 6(5), 629–639. https://doi.org/10.1007/s13204-015-0480-0

    Article  ADS  CAS  Google Scholar 

  • Mamat, M. H., Parimon, N., Ismail, A. S., Shameem Banu, I. B., Sathik Basha, S., Rani, R. A., Zoolfakar, A. S., Malek, M. F., Suriani, A. B., Ahmad, M. K., & Rusop, M. (2020). Synthesis, structural and optical properties of mesostructured, X-doped NiO (x = Zn, Sn, Fe) nanoflake network films. Materials Research Bulletin, 127, 110860. https://doi.org/10.1016/j.materresbull.2020.110860

    Article  CAS  Google Scholar 

  • Munir, M. A., Naz, M. Y., Shukrullah, S., Ansar, M. T., Farooq, M. U., Irfan, M., Mursal, S. N. F. M., Legutko, S., Petrů, J., & Pagáč, M. (2022). Enhancement of magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50Fe2O4 magnetic nanoparticles through non-thermal microwave plasma treatment for high-frequency and energy storage applications. Materials, 15(19), 6890. https://doi.org/10.3390/ma15196890

  • Nitoi, I., Oancea, P., Cristea, I., Constsntin, L., & Nechifor, G. (2015). Kinetics and mechanism of chlorinated aniline degradation by TiO2 photocatalysis. Journal of Photochemistry and Photobiology a: Chemistry, 298, 17–23. https://doi.org/10.1016/j.jphotochem.2014.10.005

    Article  CAS  Google Scholar 

  • Paswan, S. K., Kumari, S., Kar, M., Singh, A., Pathak, H., Borah, J. P., & Kumar, L. (2021). Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. Journal of Physics and Chemistry of Solids, 151, 109928. https://doi.org/10.1016/j.jpcs.2020.109928

    Article  CAS  Google Scholar 

  • Patil, B. B. (2023). A review: Influence of divalent, trivalent, rare earth and additives ions on Ni–Cu–Zn ferrites. Journal of the Indian Chemical Society, 100(1), 100811. https://doi.org/10.1016/j.jics.2022.100811

    Article  CAS  Google Scholar 

  • Peng, Y., Xia, C., Cui, M., Yao, Z., & Yi, X. (2021). Effect of reaction condition on microstructure and properties of (NiCuZn)Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation. Ultrasonics Sonochemistry, 71, 105369. https://doi.org/10.1016/j.ultsonch.2020.105369

  • Pirsaheb, M., Shahmoradi, B., Beikmohammadi, M., Azizi, E., Hossini, H., & Md Ashraf, G. (2017). Photocatalytic degradation of aniline from aqueous solutions under sunlight illumination using immobilized Cr:ZnO nanoparticles. Scientific Reports, 7(1), 1473. https://doi.org/10.1038/s41598-017-01461-5

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Prabhakaran, T., Mangalaraja, R. V., Denardin, J. C., & Jiménez, J. A. (2017). The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe 2 O 4 nanoparticles. Journal of Alloys and Compounds, 716, 171–183. https://doi.org/10.1016/j.jallcom.2017.05.048

    Article  CAS  Google Scholar 

  • Rabaa, M., Mezher, M., Aridi, A., Naoufal, D., Khalil, M., & Awad, R. (2023a). Improved photocatalytic and antibacterial activity of Mg0.33Ni0.33Co0.33GdxFe2‐xO4nanoparticles synthesized via the Co‐precipitation method. ChemistrySelect, 8(29), e202301951. https://doi.org/10.1002/slct.202301951

  • Rabaa, M., Mezher, M., Aridi, A., Naoufal, D., Khalil, M. I., Awad, R., & Abdeen, W. (2023b). Influence of lanthanum doping on the photocatalytic and antibacterial capacities of Mg0.33Ni0.33Co0.33Fe2O4 nanoparticles. Catalysts, 13(4), 693.

  • Rabaa, M., Aridi, A., Younes, G., & Awad, R. (2023c). Adsorption performance of Mg0.33NI0.33CO0.33Fe2O4 nanoparticles doped with gadolinium and lanthanum for lead (II) removal. BAU Journal - Science and Technology, 4(2):6. https://doi.org/10.54729/2959-331X.1098

  • Raju, P., Rajesham, S., Shankar, J., Anjaiah, J., & Neeraja Rani, G. (2020). Solid state root preparation, characterization and electrical properties of NiCuZnFe 2 O 4 / paraformaldehyde nanocomposites. Journal of Physics: Conference Series, 1495(1), 012004. https://doi.org/10.1088/1742-6596/1495/1/012004

    Article  CAS  Google Scholar 

  • Rashmi, S. K., Naik, H. S. B., Jayadevappa, H., Sudhamani, C. N., Patil, S. B., & Naik, M. M. (2017). Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. Journal of Solid State Chemistry, 255, 178–192. https://doi.org/10.1016/j.jssc.2017.08.013

    Article  ADS  CAS  Google Scholar 

  • Ravindra, N. M., & Srivastava, V. K. (1979). Variation of refractive index with energy gap in semiconductors. Infrared Physics, 19(5), 603–604. https://doi.org/10.1016/0020-0891(79)90081-2

    Article  ADS  CAS  Google Scholar 

  • Salih, M. H., Al-Yaqoobi, A. M., Hassan, H. A., & Al-Alawy, A. F. (2023). Assessment of the Pressure driven membrane for the potential removal of aniline from wastewater. Journal of Ecological Engineering, 24(8), 118–127. https://doi.org/10.12911/22998993/166283

    Article  Google Scholar 

  • Shahbahrami, B., Rabiee, S. M., Shidpour, R., & Salimi-Kenari, H. (2022). Influence of calcination parameters on the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles. Journal of Electroceramics, 48(4), 157–168. https://doi.org/10.1007/s10832-022-00281-y

    Article  CAS  Google Scholar 

  • Shelar, S. G., Mahajan, V. K., Patil, S. P., & Sonawane, G. H. (2020). Effect of doping parameters on photocatalytic degradation of methylene blue using Ag doped ZnO nanocatalyst. SN Applied Sciences, 2(5), 1–10. https://doi.org/10.1007/s42452-020-2634-2

    Article  CAS  Google Scholar 

  • Somvanshi, A., Husain, S., & Khan, W. (2019). Investigation of structure and physical properties of cobalt doped nano-crystalline neodymium orthoferrite. Journal of Alloys and Compounds, 778, 439–451. https://doi.org/10.1016/j.jallcom.2018.11.095

    Article  CAS  Google Scholar 

  • Sun, S., Yang, X., Zhang, Y., Zhang, F., Ding, J., Bao, J., & Gao, C. (2012). Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Progress in Natural Science: Materials International, 22(6), 639–643. https://doi.org/10.1016/j.pnsc.2012.11.008

    Article  Google Scholar 

  • Umare, S. S., Ningthoujam, R. S., Sharma, S. J., Shrivastava, S., Kurian, S., & Gajbhiye, N. S. (2008). Mössbauer and magnetic studies on nanocrystalline NiFe 2O4 particles prepared by ethylene glycol route. Hyperfine Interactions, 184(1–3), 235–243. https://doi.org/10.1007/s10751-008-9796-4

    Article  ADS  CAS  Google Scholar 

  • Wang, H.-B., Liu, J.-H., Li, W.-F., Wang, J.-B., Wang, L., Song, L.-J., Yuan, S.-J., & Li, F.-S. (2008). Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method. Journal of Alloys and Compounds, 461(2), 373–377. https://doi.org/10.1016/j.jallcom.2007.06.095

    Article  CAS  Google Scholar 

  • Xu, F., Yang, Y., Shi, X., Liao, Y., Liu, Y., Wang, X., Xie, F., & Hu, J. (2021). Investigation on growth mechanism and gyromagnetic properties of low-sintered Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite doped with Nb2O5 and glass sintering additives. Journal of Alloys and Compounds, 885, 160957. https://doi.org/10.1016/j.jallcom.2021.160957

    Article  CAS  Google Scholar 

  • Yi, X., Cui, M., Peng, Y., Xia, C., Yao, Z., & Li, Q. (2021). Influence of calcination temperature on microstructure and properties of (NiCuZn)Fe2O4 ferrite prepared via ultrasonic-assisted co-precipitation. Journal of Superconductivity and Novel Magnetism, 34(4), 1245–1252. https://doi.org/10.1007/s10948-021-05835-9

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, H., Gao, F., Zhang, S., Han, Q., Li, J., Fang, M., Cai, Y., Hu, B., Tan, X., & Wang, X. (2022). Insights into photothermally enhanced photocatalytic U(VI) extraction by a step-scheme heterojunction. Research, 2022, Article ID: 9790320 . https://doi.org/10.34133/2022/9790320

Download references

Acknowledgements

The work was performed in the Specialized Materials Science Lab and Advanced Nanomaterials Research Lab at Beirut Arab University in Lebanon in collaboration with Alexandria University in Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani Aridi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, M.A., Aridi, A., Yassine, R. et al. Impact of Calcination Temperature on Structural and Optical Properties and Photocatalytic Efficiency of Ni0.33Cu0.33Zn0.33Fe2O4 Nanoparticles in Aniline Degradation. Water Air Soil Pollut 235, 146 (2024). https://doi.org/10.1007/s11270-024-06932-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06932-w

Keywords

Navigation