Skip to main content
Log in

Green Synthesis of Carbon Aerogel Derived from Lotus Root for the Removal of Ciprofloxacin, Oil, Organic Solvents, and Supercapacitor Applications

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, lotus root-carbon aerogel (LR-CA) was successfully synthesized using facile hydrothermal, freeze-drying, and pyrolysis methods. Herein, under various calcination conditions, the lotus root-carbon aerogel-nitrogen (LR-CAN) materials maintained the three-dimensional structure with a well-developed hierarchical pore structure. Besides, LR-CAN materials also showed excellent adsorption capacity for ciprofloxacin (CIP) under specific conditions: 0.4 g/L catalyst, 50 mg/L CIP concentration, and pH 7 with removal efficiency and adsorption capacity reaching 97.1% and 241.1 mg/g, respectively. Notably, the presence of interfering salts (NaCl, KCl, and Na2SO4) minimally affected the CIP adsorption capacity of the material and demonstrated stable performance after five reuse cycles, albeit with a slight decrease in adsorption capacity from 242.2 to 200.9 mg/g. Moreover, the LR-CAN exhibited the highest adsorption capacity with chloroform, n-hexane, and used cooking oil at 27.1, 21.0, and 14.3 g/g, respectively. In addition, the LR-CAN performed outstanding electrochemical properties with the CV curve achieving the rectangular area and specific capacitance calculated from the GCD method reaching the maximum at 292.3 F/g at the current density of 3 A/g. In addition, the ability to maintain stable capacitance after 500 cycles, retaining an efficiency of 80.1%. These findings highlight the potential of environmentally friendly CA materials in effectively treating antibiotic pollutants and their promising application in supercapacitor electrode fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Ahamad, T., Naushad, M., Alhabarah, A. N., & Alshehri, S. M. (2019). N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol-A. International Journal of Biological Macromolecules, 132, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, K. N., Anuar, S. A., Wan Isahak, W. N. R., Rosli, M. I., & Yarmo, M. A. (2020). Influences of calcination atmosphere on nickel catalyst supported on mesoporous graphitic carbon nitride thin sheets for CO methanation. ACS Applied Materials & Interfaces, 12(6), 7102–7113. https://doi.org/10.1021/acsami.9b18984

    Article  CAS  Google Scholar 

  • Aylaz, G., Okan, M., Duman, M., & Aydin, H. M. (2020). Study on cost-efficient carbon aerogel to remove antibiotics from water resources. ACS Omega, 5(27), 16635–16644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buglione, L., & Pumera, M. (2012). Graphene/carbon nanotube composites not exhibiting synergic effect for supercapacitors: The resulting capacitance being average of capacitance of individual components. Electrochemistry Communications, 17, 45–47. https://doi.org/10.1016/j.elecom.2012.01.018

    Article  CAS  Google Scholar 

  • Buu, T. T., Hai, N. D., Cong, C. Q., Nam, N. T. H., Khoa, T. D., Vy, D. G., et al. (2024). A case study of different bismuth oxyhalides BiOX (X = F, Cl, Br, and I)/biochar-derived rice husk@graphitic carbon nitride for the robustness of H2O2 photoproduction and antibiotic photodegradation. Journal of Water Process Engineering, 57(10), 4558. https://doi.org/10.1016/j.jwpe.2023.104558

    Article  Google Scholar 

  • Buu, T. T., Son, V. H., Nam, N. T. H., Hai, N. D., Vuong, H. T., Quang, L. T. K., et al. (2022). Three-dimensional ZnO–TiO2/graphene aerogel for water remediation: The screening studies of adsorption and photodegradation. Ceramics International. https://doi.org/10.1016/j.ceramint.2022.11.162

  • Cai, T., Wang, H., Jin, C., Sun, Q., & Nie, Y. (2018). Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. Journal of Materials Science: Materials in Electronics, 29(5), 4334–4344. https://doi.org/10.1007/s10854-017-8381-5

    Article  CAS  Google Scholar 

  • Chen, P., Yang, J.-J., Li, S.-S., Wang, Z., Xiao, T.-Y., Qian, Y.-H., & Yu, S.-H. (2013). Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2(2), 249–256. https://doi.org/10.1016/j.nanoen.2012.09.003

    Article  CAS  Google Scholar 

  • Chen, H., Wang, X., Li, J., A, X. W.-J. of M. C., & 2015, undefined. (2015). Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. pubs.rsc.org, 2015,3, 6073-6081. https://doi.org/10.1039/C5TA00299K

  • Dai, J., Xie, A., Zhang, R., Ge, W., Chang, Z., Tian, S., et al. (2018). Scalable preparation of hierarchical porous carbon from lignin for highly efficient adsorptive removal of sulfamethazine antibiotic. Journal of Molecular Liquids, 256, 203–212. https://doi.org/10.1016/j.molliq.2018.02.042

    Article  CAS  Google Scholar 

  • Dang, L., Guo, J., & Kong, L. (2021). Design and Preparation of Lotus Root Knot Hierarchical Porous Carbon by Highly Efficient Chemistry Activation for Electric Double Layer Capacitors. ChemElectroChem, 8(21), 4062–4071. https://doi.org/10.1002/celc.202101041

    Article  CAS  Google Scholar 

  • Gao, B., Chang, Q., & Yang, H. (2021). Selective adsorption of ofloxacin and ciprofloxacin from a binary system using lignin-based adsorbents: Quantitative analysis, adsorption mechanisms, and structure-activity relationship. Science of the Total Environment, 765, 144427. https://doi.org/10.1016/j.scitotenv.2020.144427

    Article  ADS  PubMed  CAS  Google Scholar 

  • Hieu, N. H., Duyen, D. T. M., Thang, T. Q., Duy, P. H. A., Lam, H. D. N., Phat, L. N., et al. (2023). Fabrication of reduced graphene oxide-doped carbon aerogels from water hyacinth for removal of methylene blue in water and energy storage. Journal of Nanostructure in Chemistry, 1–19. https://doi.org/10.1007/s40097-023-00526-4

  • Hou, Y., Liang, Y., Hu, H., Tao, Y., Zhou, J., & Cai, J. (2021). Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: Kinetics, isotherms, and regeneration studies. Bioresource Technology, 329, 124877. https://doi.org/10.1016/j.biortech.2021.124877

    Article  PubMed  CAS  Google Scholar 

  • Huong, N. T., Dat, N. M., Thinh, D. B., Anh, T. N. M., Quan, T. H., Long, P. N. B., et al. (2020). Optimization of the antibacterial activity of silver nanoparticles-decorated graphene oxide nanocomposites. Synthetic Metals, 268, 116492.

    Article  CAS  Google Scholar 

  • Kandasamy, M., Selvaraj, M., Kumarappan, C., & Murugesan, S. (2022). Plasmonic Ag nanoparticles anchored ethylenediamine modified TiO2 nanowires@graphene oxide composites for dye-sensitized solar cell. Journal of Alloys and Compounds, 902, 163743. https://doi.org/10.1016/J.JALLCOM.2022.163743

    Article  CAS  Google Scholar 

  • Kaushik, J., Tripathi, K. M., Singh, R., & Sonkar, S. K. (2022). Thiourea-functionalized graphene aerogel for the aqueous phase sensing of toxic Pb (II) metal ions and H2O2. Chemosphere, 287, 132105.

    Article  PubMed  CAS  Google Scholar 

  • Kobina Sam, D., Kobina Sam, E., & Lv, X. (2020). Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors. ChemElectroChem, 7(18), 3695–3712. https://doi.org/10.1002/celc.202000829

    Article  CAS  Google Scholar 

  • Lee, H.-J., Noor, N., Gumeci, C., Dale, N., Parrondo, J., & Higgins, D. C. (2022). Understanding the impact of the morphology, phase structure, and mass fraction of MnO2 within MnO2/reduced graphene oxide composites for supercapacitor applications. The Journal of Physical Chemistry C, 126(31), 13004–13014.

    Article  CAS  Google Scholar 

  • Li, Y. Q., Samad, Y. A., Polychronopoulou, K., Alhassan, S. M., & Liao, K. (2014). Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustainable Chemistry and Engineering, 2(6), 1492–1497. https://doi.org/10.1021/sc500161b

    Article  CAS  Google Scholar 

  • Li, Y., Biisembaev, M., Gong, Q., Aknazarov, S., Lu, F., Huang, Y., et al. (2019). Preparation of lotus root-type monolithic-activated carbons with an hierarchical pore structure from rice husks and their adsorption of vitamin B12. ACS Omega, 4(20), 18930–18935. https://doi.org/10.1021/acsomega.9b03052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J., Shi, J., Huang, X., Wang, T., Zou, X., Li, Z., et al. (2020). Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. LWT, 132, 109873.

    Article  CAS  Google Scholar 

  • Li, T., Zhang, X., Hu, C., Li, X., Zhang, P., & Chen, Z. (2022). Porous carbon-doped g-C3N4 with tunable band structure for boosting photocatalytic H2O2 production with simultaneous pollutants removal. Journal of Environmental Chemical Engineering, 10(3), 107116. https://doi.org/10.1016/j.jece.2021.107116

    Article  CAS  Google Scholar 

  • Lin, F., Wang, T., Ren, Z., Cai, X., Wang, Y., Chen, J., et al. (2023). Central nitrogen vacancies in polymeric carbon nitride for boosted photocatalytic H2O2 production. Journal of Colloid and Interface Science, 636, 223–229. https://doi.org/10.1016/j.jcis.2023.01.036

    Article  ADS  PubMed  CAS  Google Scholar 

  • Liu, H., Xu, C., Ren, Y., Tang, D., Zhang, C., Li, F., et al. (2020). O-N–S self-doped hierarchical porous carbon synthesized from lotus leaves with high performance for dye adsorption. ACS Omega, 5(42), 27032–27042. https://doi.org/10.1021/acsomega.0c02021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, H., Xu, T., Cai, C., Liu, K., Liu, W., Zhang, M., et al. (2022). Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Advanced Functional Materials, 32(26), 2113082.

    Article  CAS  Google Scholar 

  • Lu, Y., Mu, X., Liu, Y., Gao, Y., Shi, Z., Zheng, Y., & Huang, W. (2023). The N&P Co‐doped lotus root derived carbon materials for highly sensitive electrochemical analysis of baicalein and luteolin. Electroanalysis, 35(1). https://doi.org/10.1002/elan.202200129

  • Ma, X., & Xu, Y. (2022). Three-dimensional porous nitrogen-doped carbon aerogels derived from cellulose@mof for efficient removal of dye in water. Journal of Environmental Chemical Engineering, 10(5), 108385. https://doi.org/10.1016/j.jece.2022.108385

    Article  CAS  Google Scholar 

  • Mishra, D., Zhou, R., Hassan, M. M., Hu, J., Gates, I., Mahinpey, N., & Lu, Q. (2022). Bitumen and asphaltene derived nanoporous carbon and nickel oxide/carbon composites for supercapacitor electrodes. Scientific Reports, 12(1), 4095.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Mubarak, S. A., Kim, Y., Elsayed, I., & Hassan, E. B. (2023). Cellulose nanofibril stabilized pickering emulsion templated aerogel with high oil absorption capacity. ACS Omega, 8(40), 36856–36867. https://doi.org/10.1021/acsomega.3c03871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patil, U., Lee, S. C., Kulkarni, S., Sohn, J. S., Nam, M. S., Han, S., & Jun, S. C. (2015). Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale, 7(16), 6999–7021.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Phat, L. N., Tu, P. M., Lin, T. H., Buu, T. T., Tram, T. D. T., Son, T. T., et al. (2022). PDMS – coated pomelo peel carbon aerogel: Synthesis, characterization, and oil removal application. Vietnam Journal of Chemistry, 60(S1), 14–20. https://doi.org/10.1002/vjch.202200040

    Article  CAS  Google Scholar 

  • Pung, T., Ponglong, N., & Panich-pat, T. (2022). Fabrication of pomelo-peel sponge aerogel modified with hexadecyltrimethoxysilane for the removal of oils/organic solvents. Water, Air, & Soil Pollution, 233(7), 283. https://doi.org/10.1007/s11270-022-05766-8

    Article  ADS  CAS  Google Scholar 

  • Qin, C., Lu, X., Yin, G., Jin, Z., Tan, Q., & Bai, X. (2011). Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors. Materials Chemistry and Physics, 126(1–2), 453–458. https://doi.org/10.1016/j.matchemphys.2010.09.019

    Article  CAS  Google Scholar 

  • Qu, K., Huang, L., Hu, S., Liu, C., Yang, Q., Liu, L., et al. (2023). TiO2 supported on rice straw biochar as an adsorptive and photocatalytic composite for the efficient removal of ciprofloxacin in aqueous matrices. Journal of Environmental Chemical Engineering, 11(2), 109430. https://doi.org/10.1016/j.jece.2023.109430

    Article  CAS  Google Scholar 

  • Ren, B., Xu, Y., Zhang, L., & Liu, Z. (2018). Carbon-doped graphitic carbon nitride as environment-benign adsorbent for methylene blue adsorption: Kinetics, isotherm and thermodynamics study. Journal of the Taiwan Institute of Chemical Engineers, 88, 114–120. https://doi.org/10.1016/j.jtice.2018.03.041

    Article  CAS  Google Scholar 

  • Sarapuu, A., Kreek, K., Kisand, K., Kook, M., Uibu M, Koel M, Tammeveski (2017). Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solutions. Electrochimica Ecta, 230, 81–88. https://doi.org/10.1016/j.electacta.2017.01.157

  • Sattayarut, V., Wanchaem, T., Ukkakimapan, P., Yordsri, V., Dulyaseree, P., Phonyiem, M., et al. (2019). Nitrogen self-doped activated carbons via the direct activation of Samanea saman leaves for high energy density supercapacitors. RSC Advances, 9(38), 21724–21732. https://doi.org/10.1039/C9RA03437D

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Senasu, T., Nijpanich, S., Juabrum, S., Chanlek, N., & Nanan, S. (2021). CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin antibiotics. Applied Surface Science, 567, 150850. https://doi.org/10.1016/j.apsusc.2021.150850

    Article  CAS  Google Scholar 

  • Song, W., Zhao, J., Xie, X., Liu, W., Liu, S., Chang, H., & Wang, C. (2021). Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: The synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight. RSC Advances, 11(25), 15369–15379. https://doi.org/10.1039/D1RA00941A

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, P., Liu, Y., Mo, F., Wu, M., Xiao, Y., Xiao, X., et al. (2023). Efficient photocatalytic degradation of high-concentration moxifloxacin over dodecyl benzene sulfonate modified graphitic carbon nitride: Enhanced photogenerated charge separation and pollutant enrichment. Journal of Cleaner Production, 393, 136320. https://doi.org/10.1016/j.jclepro.2023.136320

    Article  CAS  Google Scholar 

  • Tan, G., Sun, W., Xu, Y., Wang, H., & Xu, N. (2016). Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 211, 727–735.

    Article  PubMed  CAS  Google Scholar 

  • Tian, X., Liu, J., Wang, Y., Shi, F., Shan, Z., Zhou, J., & Liu, J. (2019). Adsorption of antibiotics from aqueous solution by different aerogels. Journal of Non-Crystalline Solids, 505, 72–78.

    Article  ADS  CAS  Google Scholar 

  • Wang, X., Wang, M., Zhang, X., Li, H., & Guo, X. (2016). Low-cost, green synthesis of highly porous carbons derived from lotus root shell as superior performance electrode materials in supercapacitor. Journal of Energy Chemistry, 25(1), 26–34.

    Article  ADS  CAS  Google Scholar 

  • Wang, S., Li, X., Liu, Y., Zhang, C., Tan, X., Zeng, G., et al. (2018). Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review. Journal of Hazardous Materials, 342, 177–191.

    Article  PubMed  CAS  Google Scholar 

  • Wei, X., Wan, S., & Gao, S. (2016). Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy, 28, 206–215. https://doi.org/10.1016/j.nanoen.2016.08.023

    Article  CAS  Google Scholar 

  • Wei, B., Shang, C., Pan, X., Chen, Z., Shui, L., Wang, X., & Zhou, G. (2019). Lotus root-like nitrogen-doped carbon nanofiber structure assembled with VN catalysts as a multifunctional host for superior lithium–sulfur batteries. Nanomaterials, 9(12), 1724. https://doi.org/10.3390/nano9121724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, R.-Y., Wang, Y., Xue, X.-Y., An, F.-Q., Hu, T.-P., & Gao, J.-F. (2018). High selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution. Korean Journal of Chemical Engineering, 35(3), 757–763. https://doi.org/10.1007/s11814-017-0322-8

    Article  CAS  Google Scholar 

  • Yang, Y., Tong, Z., Ngai, T., & Wang, C. (2014). Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Applied Materials and Interfaces, 6(9), 6351–6360. https://doi.org/10.1021/AM5016342

    Article  PubMed  CAS  Google Scholar 

  • Yu, M., Han, Y., Li, J., & Wang, L. (2018). Three-dimensional porous carbon aerogels from sodium carboxymethyl cellulose/poly(vinyl alcohol) composite for high-performance supercapacitors. Journal of Porous Materials, 25(6), 1679–1689. https://doi.org/10.1007/s10934-018-0581-8

    Article  CAS  Google Scholar 

  • Zhang, X., Zhao, J., He, X., Li, Q., Ao, C., Xia, T., et al. (2018). Mechanically robust and highly compressible electrochemical supercapacitors from nitrogen-doped carbon aerogels. Carbon, 127, 236–244. https://doi.org/10.1016/j.carbon.2017.10.083

    Article  CAS  Google Scholar 

  • Zhang, T., Yuan, D., Guo, Q., Qiu, F., Yang, D., & Ou, Z. (2019). Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu. Food and Bioproducts Processing, 114, 154–162.

    Article  CAS  Google Scholar 

  • Zhang, L., Sha, C., Li, B., & Wang, W. (2023). Investigation of utilizing carbonized lotus root as photothermal material in the solar steam generation system. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 45(2), 3359–3368. https://doi.org/10.1080/15567036.2023.2196953

    Article  CAS  Google Scholar 

  • Zhong, G., Xu, M., Xu, S., Fu, X., Liao, W., & Xu, Y. (2021). Green synthesis of iron and nitrogen co-doped porous carbon via pyrolysing lotus root as a high-performance electrocatalyst for oxygen reduction reaction. International Journal of Energy Research, 45(7), 10393–10408. https://doi.org/10.1002/er.6527

    Article  ADS  CAS  Google Scholar 

  • Zhou, L., & Xu, Z. (2020). Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. Journal of Hazardous Materials, 388, 121804.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU−HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

Experimental, data curation, and formal analysis: Mai Thanh Phong, Ton That Buu, Phan Minh Tu, Nguyen Duy Hai, Nguyen Thanh Hoai Nam.

Writing–original draft and editing: Mai Thanh Phong, Ton That Buu, Vo Minh Quan, Tran Ngoc Son, Nguyen Truong Son, Nguyen Huu Hieu.

Conceptualization, Methodology, Investigation: Mai Thanh Phong, Ton That Buu, Le Gia Han, Nguyen Huu Hieu.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ton That Buu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phong, M.T., Tu, P.M., Hai, N.D. et al. Green Synthesis of Carbon Aerogel Derived from Lotus Root for the Removal of Ciprofloxacin, Oil, Organic Solvents, and Supercapacitor Applications. Water Air Soil Pollut 235, 135 (2024). https://doi.org/10.1007/s11270-024-06919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06919-7

Keywords

Navigation