Skip to main content
Log in

Alleviation of the Cadmium Toxicity by Application of a Microbial Derived Compound, Ectoine

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metals are natural components that are formed as a result of biotic activities, accumulate in the ecosystem because they cannot be biodegraded, and thus cause environmental stress. In this study, the alleviation effect of the ectoine, which is the subject of many studies, on cadmium (Cd) toxicity was tested. Ectoine is produced by various bacteria in response to osmotic stress. Many different properties of this compound have been proven and studies on these compounds are constantly increasing. In the current study, we determined that ectoine has not any detrimental effect on plant (wheat) germination rate, antioxidant enzyme levels, H2Oand malondialdehyde (MDA) contents. On the other hand, co-treatment of ectoine with Cd (110 ppm) significantly alleviated Cd toxicity [increased germination rate, antioxidant enzyme levels and genomic template stability (GTS) and decreased the content of H2Oand MDA]. The findings mentioned above reports for the first time that ectoine has an amelioration effect on Cd toxicity. The alleviation effect of ectoine might arise from its reactive oxygen scavenging (singlet oxygen and hydroxyl radical) traits and macromolecule (DNA and protein) protection properties through which it decreases water molecules around macromolecules.

Novelty Statement

The findings of this study report for the first time that ectoine has an amelioration effect on Cd toxicity. The amelioration effect of ectoine against toxicity of cadmium was demonstrated by evaluating germination ratio, random amplified polymorphic DNA, content of H2Oand MDA and antioxidant enzymes. The results of the study show that ectoine ameliorates the toxicity caused by cadmium in all the analysed parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Agar, G., Bozari, S., Adıgüzel, A., Barış, Ö., Güllüce, M., Şengül, M., & Şahin, F. (2009). Phenotypic and genetic variation among Astragalus species from Turkey. Romanian Biotechnology Letters, 14(2), 4267–4274.

    Google Scholar 

  • Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G., & Tran, L.-S.P. (2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One, 10(1), e0114571. https://doi.org/10.1371/journal.pone.0114571

    Article  CAS  Google Scholar 

  • Ali, B., Deng, X., Hu, X., Gill, R., Ali, S., Wang, S., & Zhou, W. (2015). Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. Journal of Agricultural Science and Technology, 17(1), 63–74.

    Google Scholar 

  • Alizadeh, E., & Sanche, L. (2013). Role of humidity and oxygen level on damage to DNA induced by soft X-rays and low-energy electrons. Journal of Physical Chemistry C, 117(43), 22445–22453.

    Article  CAS  Google Scholar 

  • Anjum, N. A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S. S., Iqbal, M., Lukatkin, A. S., Pereira, E., Duarte, A. C., & Ahmad, I. (2015). Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22(6), 4099–4121. https://doi.org/10.1007/s11356-014-3917-1

    Article  CAS  Google Scholar 

  • Bandyopadhyay, A., & Mukherjee, A. (2011). Sensitivity of Allium and Nicotiana in cellular and acellular comet assays to assess differential genotoxicity of direct and indirect acting mutagens. Ecotoxicology and Environmental Safety, 74(4), 860–865. https://doi.org/10.1016/j.ecoenv.2010.12.002

    Article  CAS  Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2018). Abiotic stress, generation of reactive oxygen species, and their consequences: An overview. In S. Vijay Pratap, S. Samiksha, T. Durgesh Kumar, P. Sheo Mohan, & C. Devendra Kumar (Eds.), Reactive oxygen species in plants: Boon or bane? Revisiting the role of ROS (pp. 23–50). John Wiley & Sons Ltd.

    Google Scholar 

  • Barceló, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13(1), 1–37. https://doi.org/10.1080/01904169009364057

    Article  Google Scholar 

  • Baruah, N., Mondal, S. C., Farooq, M., & Gogoi, N. (2019). Influence of heavy metals on seed germination and seedling growth of wheat, pea, and tomato. Water, Air, and Soil Pollution, 230(12), 1–15. https://doi.org/10.1007/s11270-019-4329-0

    Article  CAS  Google Scholar 

  • Baycu, G., Tolunay, D., Özden, H., & Günebakan, S. (2006). Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution, 143(3), 545–554. https://doi.org/10.1016/j.envpol.2005.10.050

    Article  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase improved assays and assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  • Bilstein, A., Heinrich, A., Rybachuk, A., & Mösges, R. (2021). Ectoine in the treatment of irritations and inflammations of the eye surface. BioMed Research International, 2021, 16. https://doi.org/10.1155/2021/8885032

  • Borgohain, P., Saha, B., Agrahari, R., Chowardhara, B., Sahoo, S., van der Vyver, C., & Panda, S. K. (2019). Sl NAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma, 256(4), 1065–1077. https://doi.org/10.1007/s00709-019-01368-0

    Article  CAS  Google Scholar 

  • Boroujeni, M. B., & Nayeri, H. (2018). Stabilization of bovine lactoperoxidase in the presence of ectoine. Food Chemistry, 265, 208–215.

    Article  CAS  Google Scholar 

  • Bownik, A., Zofia, S., & Tadeusz, S. (2014). Protective effects of ectoine on heat-stressed Daphnia magna. Journal of Comparative Physiology B, 184(8), 961–976.

    Article  Google Scholar 

  • Brands, S., Schein, P., Castro-Ochoa, K. F., & Galinski, E. A. (2019). Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Archives of Biochemistry and Biophysics, 674, 108097.

    Article  CAS  Google Scholar 

  • Buenger, J., & Driller, H. (2004). Ectoin: An effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacology and Physiology, 17(5), 232–237.

    Article  CAS  Google Scholar 

  • Buommino, E., Schiraldi, C., Baroni, A., Paoletti, I., Lamberti, M., De Rosa, M., & Tufano, M. A. (2005). Ectoine from halophilic microorganisms induces the expression of hsp70 and hsp70B′ in human keratinocytes modulating the proinflammatory response. Cell Stress and Chaperones, 10(3), 197.

    Article  CAS  Google Scholar 

  • Casalino, E., Sblano, C., Calzaretti, G., & Landriscina, C. (2006). Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver. Toxicology, 217(2–3), 240–245. https://doi.org/10.1016/j.tox.2005.09.020

    Article  CAS  Google Scholar 

  • Catalá, A. (2006). An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. International Journal of Biochemistry & Cell Biology, 38(9), 1482–1495. https://doi.org/10.1016/j.biocel.2006.02.010

    Article  CAS  Google Scholar 

  • Chowardhara, B., Borgohain, P., Saha, B., Awasthi, J. P., & Panda, S. K. (2020). Differential oxidative stress responses in Brassica juncea (L.) Czern and Coss cultivars induced by cadmium at germination and early seedling stage. Acta Physiologiae Plantarum, 42, 1–12. https://doi.org/10.1007/s11738-020-03094-0

    Article  CAS  Google Scholar 

  • Chrestensen, C. A., Starke, D. W., & Mieyal, J. J. (2000). Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. Journal of Biological Chemistry, 275(34), 26556–26565. https://doi.org/10.1074/jbc.M004097200

    Article  CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003

    Article  CAS  Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53(1), 159–182. https://doi.org/10.1146/annurev.arplant.53.100301.135154

    Article  CAS  Google Scholar 

  • Dai, T., Wang, Y., & Yang, G. (2022). Visualization of DNA damage and protection by atomic force microscopy in liquid. International Journal of Molecular Sciences, 23(8), 4388.

    Article  CAS  Google Scholar 

  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021

    Article  CAS  Google Scholar 

  • Demir, E., Qin, T., Li, Y., Zhang, Y., Guo, X., Ingle, T., Yan, J., Orza, A. I., Biris, A. S., & Ghorai, S. (2020). Cytotoxicity and genotoxicity of cadmium oxide nanoparticles evaluated using in vitro assays. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 850, 503149.

    Article  Google Scholar 

  • El-Amier, Y., Elhindi, K., El-Hendawy, S., Al-Rashed, S., & Abd-ElGawad, A. (2019). Antioxidant system and biomolecules alteration in Pisum sativum under heavy metal stress and possible alleviation by 5-aminolevulinic acid. Molecules, 24(22), 4194. https://doi.org/10.3390/molecules24224194

    Article  CAS  Google Scholar 

  • Esterbauer, H., & Cheeseman, K. H. (1990). Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407–421. https://doi.org/10.1016/0076-6879(90)86134-H

    Article  CAS  Google Scholar 

  • Faller, P., Kienzler, K., & Krieger-Liszkay, A. (2005). Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(1–2), 158–164. https://doi.org/10.1016/j.bbabio.2004.10.005

    Article  CAS  Google Scholar 

  • Farmer, E. E., & Mueller, M. J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annual Review of Plant Biology, 64, 429–450. https://doi.org/10.1146/annurev-arplant-050312-120132

    Article  CAS  Google Scholar 

  • Galinski, E. A. (1993). Compatible solutes of halophilic eubacteria: Molecular principles, water-solute interaction, stress protection. Experientia, 49(6), 487–496.

    Article  CAS  Google Scholar 

  • Galinski, E. A., Stein, M., Amendt, B., & Kinder, M. (1997). The kosmotropic (structure-forming) effect of compensatory solutes. Comparative Biochemistry and Physiology, 117(3), 357–365.

    Article  Google Scholar 

  • Garnier, L., Simon Plas, F., Thuleau, P., Agnel, J.-P., Blein, J.-P., Ranjeva, R., & Montillet, J.-l. (2006). Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant, Cell and Environment, 29(10), 1956–1969. https://doi.org/10.1111/j.1365-3040.2006.01571.x

    Article  CAS  Google Scholar 

  • Graf, R., Anzali, S., Buenger, J., Pfluecker, F., & Driller, H. (2008). The multifunctional role of ectoine as a natural cell protectant. Clinics in Dermatology, 26(4), 326–333. https://doi.org/10.1016/j.clindermatol.2008.01.002

    Article  Google Scholar 

  • Grether-Beck, S., Timmer, A., Felsner, I., Brenden, H., Brammertz, D., & Krutmann, J. (2005). Ultraviolet A-induced signaling involves a ceramide-mediated autocrine loop leading to ceramide de novo synthesis. The Journal of Investigative Dermatology, 125(3), 545–553. https://doi.org/10.1111/j.0022-202X.2005.23782.x

    Article  CAS  Google Scholar 

  • Hahn, M. B., Meyer, S., Schröter, M.-A., Kunte, H.-J., Solomun, T., & Sturm, H. (2017). DNA protection by ectoine from ionizing radiation: Molecular mechanisms. Physical Chemistry Chemical Physics, 19(37), 25717–25722. https://doi.org/10.1039/C7CP02860A

    Article  CAS  Google Scholar 

  • Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Malik, J. A., Wirth, S., & Egamberdieva, D. (2019). Role of calcium in AMF-mediated alleviation of the adverse impacts of cadmium stress in Bassia indica [Wight] AJ Scott. Saudi Journal of Biological Sciences, 26(4), 828–838. https://doi.org/10.1016/j.sjbs.2016.11.003

  • He, J., Ren, Y., Chen, X., & Chen, H. (2014). Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicology and Environmental Safety, 108, 114–119. https://doi.org/10.1016/j.ecoenv.2014.05.021

    Article  CAS  Google Scholar 

  • Idrees, S., Shabir, S., Ilyas, N., Batool, N., & Kanwal, S. (2015). Assessment of cadmium on wheat (Triticum aestivum L.) in hydroponics medium. Agrociencia, 49(8), 917–929.

    Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  • Jozefczak, M., Keunen, E., Schat, H., Bliek, M., Hernández, L. E., Carleer, R., Remans, T., Bohler, S., Vangronsveld, J., & Cuypers, A. (2014). Differential response of Arabidopsis leaves and roots to cadmium: Glutathione-related chelating capacity vs antioxidant capacity. Plant Physiology and Biochemistry, 83, 1–9. https://doi.org/10.1016/j.plaphy.2014.07.001

    Article  CAS  Google Scholar 

  • Jung, H.-i, Lee, B.-R., Chae, M.-J., Lee, E.-J., Lee, T.-G., Jung, G.-B., Kim, M.-S., & Lee, J. (2020). Ascorbate-mediated modulation of cadmium stress responses: Reactive oxygen species and redox status in Brassica napus. Frontiers in Plant Science, 11, 1823. https://doi.org/10.3389/fpls.2020.586547

    Article  Google Scholar 

  • Kanapathipillai, M., Ku, S. H., Girigoswami, K., & Park, C. B. (2008). Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106–126. Biochemical and Biophysical Research Communications, 365(4), 808–813. https://doi.org/10.1016/j.bbrc.2007.11.074

    Article  CAS  Google Scholar 

  • Kapoor, D., Kaur, S., & Bhardwaj, R. (2014). Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Research International, 2014, 13. https://doi.org/10.1155/2014/726070

  • Kaya, C., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiologia Plantarum, 168(2), 345–360. https://doi.org/10.1111/ppl.13012

    Article  CAS  Google Scholar 

  • Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research, 22(18), 13772–13799. https://doi.org/10.1007/s11356-015-4881-0

    Article  CAS  Google Scholar 

  • Li, S., Yang, W., Yang, T., Chen, Y., & Ni, W. (2015). Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—a cadmium accumulating plant. International Journal of Phytoremediation, 17(1), 85–92. https://doi.org/10.1080/15226514.2013.828020

    Article  CAS  Google Scholar 

  • Lippert, K., & Galinski, E. A. (1992). Enzyme stabilization be ectoine-type compatible solutes: Protection against heating, freezing and drying. Applied Microbiology and Biotechnology, 37(1), 61–65.

    Article  CAS  Google Scholar 

  • Liu, W., Li, P., Qi, X., Zhou, Q., Zheng, L., Sun, T., & Yang, Y. (2005). DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 61(2), 158–167. https://doi.org/10.1016/j.chemosphere.2005.02.078

    Article  CAS  Google Scholar 

  • Maheshwari, R., & Dubey, R. (2009). Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regulation, 59(1), 37–49. https://doi.org/10.1007/s10725-009-9386-8

    Article  CAS  Google Scholar 

  • Manquián-Cerda, K., Escudey, M., Zúñiga, G., Arancibia-Miranda, N., Molina, M., & Cruces, E. (2016). Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicology and Environmental Safety, 133, 316–326. https://doi.org/10.1016/j.ecoenv.2016.07.029

    Article  CAS  Google Scholar 

  • Martins, L. L., Mourato, M. P., Cardoso, A. I., Pinto, A. P., Mota, A. M., Maria de Lurdes, S. G., & de Varennes, A. (2011). Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiologiae Plantarum, 33(4), 1375–1383. https://doi.org/10.1007/s11738-010-0671-y

    Article  CAS  Google Scholar 

  • Mishra, S., Jha, A., & Dubey, R. (2011). Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma, 248(3), 565–577. https://doi.org/10.1007/s00709-010-0210-0

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  Google Scholar 

  • Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 48, 1–7. https://doi.org/10.1186/S40659-015-0001-3

    Article  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Nikolić, N., Zorić, L., Cvetković, I., Pajević, S., Borišev, M., Orlović, S., & Pilipović, A. (2017). Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus× euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. Forest-Biogeosciences and Forestry., 10(3), 635. https://doi.org/10.3832/ifor2165-010

    Article  Google Scholar 

  • Nouairi, I., Ammar, W. B., Youssef, N. B., Miled, D. D. B., Ghorbal, M. H., & Zarrouk, M. (2009). Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiologiae Plantarum, 31(2), 237–247. https://doi.org/10.1007/s11738-008-0224-9

    Article  CAS  Google Scholar 

  • Olmos, E., Martínez-Solano, J. R., Piqueras, A., & Hellín, E. (2003). Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of Experimental Botany, 54(381), 291–301. https://doi.org/10.1093/jxb/erg028

    Article  CAS  Google Scholar 

  • Oprzeska-Zingrebe, E. A., Meyer, S., Roloff, A., Kunte, H.-J., & Smiatek, J. (2018). Influence of compatible solute ectoine on distinct DNA structures: Thermodynamic insights into molecular binding mechanisms and destabilization effects. Physical Chemistry Chemical Physics, 20(40), 25861–25874. https://doi.org/10.1039/C8CP03543A

    Article  CAS  Google Scholar 

  • Ozfidan-Konakci, C., Elbasan, F., Arikan, B., Alp, F. N., Yildiztugay, E., Keles, R., & Kucukoduk, M. (2022). Ex-foliar applied extremolyte ectoine improves water management, photosystem, antioxidant system and redox homeostasis in Zea mays under cadmium toxicity. South+A1443 African Journal of Botany, 147, 130–141.

    Article  CAS  Google Scholar 

  • Parwata, I. P., Wahyuningrum, D., Suhandono, S., & Hertadi, R. (2021). Ability of ectoine to stabilize lipase against elevated temperatures and methanol concentrations. Indonesian Journal of Chemistry, 21(2), 494–501.

    Article  CAS  Google Scholar 

  • Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15.

    Article  CAS  Google Scholar 

  • Razinger, J., Dermastia, M., Koce, J. D., & Zrimec, A. (2008). Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure. Environmental Pollution, 153(3), 687–694. https://doi.org/10.1016/j.envpol.2007.08.018

    Article  CAS  Google Scholar 

  • Rombel-Bryzek, A., Rajfur, M., Żuk, O., & Zając, P. (2018). The effect of cadmium on oxidative stress in Beta vulgaris. Ecological Chemistry and Engineering, 25(3), 457–467. https://doi.org/10.1515/eces-2018-0031

    Article  CAS  Google Scholar 

  • Romero-Puertas, M., Rodríguez-Serrano, M., Corpas, F., Gomez, M. D., Del Rio, L., & Sandalio, L. (2004). Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant, Cell and Environment, 27(9), 1122–1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x

    Article  CAS  Google Scholar 

  • Sajjad, W., Qadir, S., Ahmad, M., Rafiq, M., Hasan, F., Tehan, R., McPhail, K., & Shah, A. (2018). Ectoine: a compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM 19 strain to prevent ultraviolet-induced protein damage. Journal of Applied Microbiology, 125(2), 457–467. https://doi.org/10.1111/jam.13903

    Article  CAS  Google Scholar 

  • Salmannejad, F., & Nafissi-Varcheh, N. (2017). Ectoine and hydroxyectoine inhibit thermal-induced aggregation and increase thermostability of recombinant human interferon Alfa2b. European Journal of Pharmaceutical Sciences, 97, 200–207.

    Article  CAS  Google Scholar 

  • Salvador, M., Argandoña, M., Naranjo, E., Piubeli, F., Nieto, J. J., Csonka, L. N., & Vargas, C. (2018). Quantitative RNA-seq analysis unveils osmotic and thermal adaptation mechanisms relevant for ectoine production in Chromohalobacter salexigens. Frontiers in Microbiology., 9, 1845. https://doi.org/10.3389/fmicb.2018.01845

    Article  Google Scholar 

  • Schröter, M.-A., Meyer, S., Hahn, M. B., Solomun, T., Sturm, H., & Kunte, H.-J. (2017). Ectoine protects DNA from damage by ionizing radiation. Science and Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-15512-4

    Article  CAS  Google Scholar 

  • Shafiq, M., & Iqbal, M. Z. (2006). The toxicity effects of heavy metals on germination and seedling growth of Cassia siamea Lamk. Journal of New Seeds, 7(4), 95–105. https://doi.org/10.1300/J153v07n04_07

    Article  Google Scholar 

  • Shah, K., Kumar, R. G., Verma, S., & Dubey, R. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135–1144. https://doi.org/10.1016/S0168-9452(01)00517-9

    Article  CAS  Google Scholar 

  • Shamsi, I., Wei, K., Zhang, G., Jilani, G., & Hassan, M. (2008). Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biologia Plantarum, 52(1), 165–169. https://doi.org/10.1007/s10535-008-0036-1

    Article  CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46(3), 209–221. https://doi.org/10.1007/s10725-005-0002-2

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Rokita, S. E. (2012). Oxidation of amino acids, peptides, and proteins: Kinetics and mechanism, (Vol. 9). John Wiley & Sons.

    Book  Google Scholar 

  • Siedlecka, A., & BaszyńAski, T. (1993). Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiologia Plantarum, 87(2), 199–202. https://doi.org/10.1111/j.1399-3054.1993.tb00142.x

    Article  CAS  Google Scholar 

  • Silva, J., Fernandes, A., Junior, M. S., Santos, C., & Lobato, A. (2018). Tolerance mechanisms in Cassia alata exposed to cadmium toxicity–potential use for phytoremediation. Photosynthetica, 56(2), 495–504. https://doi.org/10.1007/s11099-017-0698-z

    Article  CAS  Google Scholar 

  • Srivastava, S., & Dubey, R. (2011). Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regulation, 64(1), 1–16. https://doi.org/10.1007/s10725-010-9526-1

    Article  CAS  Google Scholar 

  • Stadtman, E. R. (1992). Protein oxidation and aging. Science, 257(5074), 1220–1224. https://doi.org/10.1126/science.1355616

    Article  CAS  Google Scholar 

  • Street, R., Kulkarni, M., Stirk, W., Southway, C., & Van Staden, J. (2010). Effect of cadmium on growth and micronutrient distribution in wild garlic (Tulbaghia violacea). South+A1443 African Journal of Botany, 76(2), 332–336. https://doi.org/10.1016/j.sajb.2009.12.006

    Article  CAS  Google Scholar 

  • Triantaphylides, C., Krischke, M., Hoeberichts, F. A., Ksas, B., Gresser, G., Havaux, M., Van Breusegem, F., & Mueller, M. J. (2008). Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology, 148(2), 960–968. https://doi.org/10.1104/pp.108.125690

    Article  CAS  Google Scholar 

  • Ulusu, Y., Öztürk, L., & Elmastaş, M. (2017). Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russian Journal of Plant Physiology, 64(6), 883–888. https://doi.org/10.1134/S1021443717060139

    Article  CAS  Google Scholar 

  • Ünyayar, S., Celik, A., Çekiç, F. Ö., & Gözel, A. (2006). Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis, 21(1), 77–81.

    Article  Google Scholar 

  • Van-Thuoc, D., Hashim, S. O., Hatti-Kaul, R., & Mamo, G. (2013). Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: A study using Bacillus halodurans xylanase as a model. Applied Microbiology and Biotechnology, 97(14), 6271–6278.

    Article  CAS  Google Scholar 

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372. https://doi.org/10.1016/j.pbi.2009.05.001

    Article  CAS  Google Scholar 

  • Verma, S., & Dubey, R. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645–655. https://doi.org/10.1016/S0168-9452(03)00022-0

    Article  CAS  Google Scholar 

  • Vogeli-Lange, R., & Wagner, G. J. (1990). Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: Implication of a transport function for cadmium-binding peptides. Plant Physiology, 92(4), 1086–1093. https://doi.org/10.1104/pp.92.4.1086

    Article  CAS  Google Scholar 

  • Wang, C.-R., Nguyen, J., & Lu, Q.-B. (2009). Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: A new molecular mechanism for reductive DNA damage. Journal of the American Chemical Society, 131(32), 11320–11322.

    Article  CAS  Google Scholar 

  • Wardman, P., & Candeias, L. P. (1996). Fenton chemistry: An introduction. Radiation Research, 145(5), 523–531. https://doi.org/10.2307/3579270

    Article  CAS  Google Scholar 

  • Yang, J., Li, K., Zheng, W., Zhang, H., Cao, X., Lan, Y., Yang, C., & Li, C. (2015). Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz. BMC Genomics, 16(1), 1–15. https://doi.org/10.1186/s12864-015-1923-4

    Article  CAS  Google Scholar 

  • Zhang, M., Deng, X., Yin, L., Qi, L., Wang, X., Wang, S., & Li, H. (2016). Regulation of galactolipid biosynthesis by overexpression of the rice MGD gene contributes to enhanced aluminum tolerance in tobacco. Frontiers in Plant Science, 7, 337. https://doi.org/10.3389/fpls.2016.00337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.O. conducted the experimentation and each author (F.O., K.U.P., S.B. and D.T.) wrote the part of the manuscript related to their area of expertise. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Furkan Orhan.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, F., Parlak, K.U., Tabay, D. et al. Alleviation of the Cadmium Toxicity by Application of a Microbial Derived Compound, Ectoine. Water Air Soil Pollut 234, 534 (2023). https://doi.org/10.1007/s11270-023-06562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06562-8

Keywords

Navigation