Skip to main content

Advertisement

Log in

The Potential of Biochar Application to Enhance Soil Quality, Yield, and Growth of Wheat and Barley Under Rainfed Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar (BC) is a carbon-rich product obtained by heating biomass in a closed system with a finite amount of oxygen. BC has gained significant attention in agriculture as a soil amendment. This study investigated the effect of BC produced from agricultural bio-waste on soil physical and chemical properties and wheat and barley growth performance under rainfed conditions. The BC was applied at different rates before tillage at 0, 5, 10, and 15 t ha−1. The BC application significantly enhanced most soil-measured physical and chemical properties, increasing soil water retention capacity, soil nutrients, and saturated hydraulic properties. The growth performances of barley and wheat crops were enhanced by BC application, which significantly increased grain yield by around 6- and 2-folds at 15 t ha−1 compared to the control, respectively. The BC application demonstrated its usefulness in reducing the impact of drought conditions by maintaining better moisture content between rainfall events. Based on the output, we suggest that the BC application rate at 15 t ha−1 can be used to improve barley and wheat growth under rainfed conditions. Nevertheless, research is needed to investigate the effectiveness of BC from different feedstocks in improving soil properties in the field and plant development and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. (2016). Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98, 243–253. https://doi.org/10.1016/j.apsoil.2015.10.021

    Article  Google Scholar 

  • Al Hiary, M., Dhehibi, B., & Kassam, S. N. (2019). Market study and marketing strategy for olive and olive oil sector in the southern arid part of Jordan. Journal of Agricultural Science and Technology, 21(5), 1065–1077. https://hdl.handle.net/20.500.11766/10665.

    Google Scholar 

  • Alburquerque, J. A., Salazar, P., Barrón, V., Torrent, J., del Carmen del Campillo, M., Gallardo, A., & Villar, R. (2013). Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33(3), 475–484. https://doi.org/10.1007/s13593-012-0128-3

    Article  CAS  Google Scholar 

  • Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., Prins, W., Bouckaert, L., & Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57, 401–410. https://doi.org/10.1016/j.soilbio.2012.10.025

    Article  CAS  Google Scholar 

  • AOAC, A. (1995). Official methods of analysis (16th ed.). Washington DC, USA: Association of official analytical chemists.

    Google Scholar 

  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1), 1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Baronti, S., Alberti, G., Delle Vedove, G., Di Gennaro, F., Fellet, G., Genesio, L., Miglietta, F., Peressotti, A., & Vaccari, F. P. (2010). The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Italian Journal of Agronomy, 5(1), 3–12. https://doi.org/10.4081/ija.2010.3

    Article  Google Scholar 

  • Biederman, L. A., & Stanley Harpole, W. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Blackwell, P., Riethmuller, G., & Collins, M. (2009). Biochar application to soil. Biochar for Environmental Management: Science and Technology, 1, 207–226. https://doi.org/10.5860/choice.47-0296

    Article  Google Scholar 

  • Blackwell, P., Joseph, S., Munroe, P., Anawar, H. M., Storer, P., Gilkes, R. J., & Solaiman, Z. M. (2015). Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere, 25(5), 686–695. https://doi.org/10.1016/S1002-0160(15)30049-7

    Article  CAS  Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Peterson, RG, and LD Calvin. 1986. Bulk density Chapter 13 pp. 363–376. Klute, A. Methods of Soil Analysis. Part 1, Soil Science Society of America, 363-376, Madison, WI, USA.

  • Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3), 87–102. https://doi.org/10.1016/s1385-8947(02)00142-0

    Article  CAS  Google Scholar 

  • Bruun, S., & El-Zehery, T. (2012). Biochar effect on the mineralization of soil organic matter. Pesquisa Agropecuária Brasileira, 47(5), 665–671.

    Article  Google Scholar 

  • Curaqueo, G., Meier, S., Khan, N., Cea, M., & Navia, R. (2014). Use of biochar on two volcanic soils: Effects on soil properties and barley yield. Journal of Soil Science and Plant Nutrition, 14(4), 911–924. https://doi.org/10.4067/s0718-95162014005000072

    Article  Google Scholar 

  • Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2013). Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 65, 65–72. https://doi.org/10.1016/j.apsoil.2013.01.006

    Article  Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biology and Fertility of Soils, 35(4), 219–230. https://doi.org/10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Hua, L., Chen, Y., & Wu, W. (2012). Impacts upon soil quality and plant growth of bamboo charcoal addition to composted sludge. Environmental Technology, 33(1), 61–68. https://doi.org/10.1080/09593330.2010.549845

    Article  CAS  Google Scholar 

  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Keith, A., Singh, B., & Singh, B. P. (2011). Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science & Technology, 45(22), 9611–9618. https://doi.org/10.1021/es202186j

    Article  CAS  Google Scholar 

  • Knudsen, D., Peterson, G. A., & Pratt, P. (1982). Lithium, sodium and potassium. In Page, A.L., Ed., Methods of Soil Analysis, American Society of Agronomy, Madison, 225–246. - References - Scientific Research Publishing. American Society of Agronomy, Madison,. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=2427154

  • Koide, R. T., Nguyen, B. T., Skinner, R. H., Dell, C. J., Peoples, M. S., Adler, P. R., & Drohan, P. J. (2015). Biochar amendment of soil improves resilience to climate change. GCB Bioenergy, 7(5), 1084–1091. https://doi.org/10.1111/gcbb.12191

    Article  Google Scholar 

  • Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil. agronomic and environmental benefits and unintended consequences. In Advances in Agronomy (Vol. 112). https://doi.org/10.1016/B978-0-12-385538-1.00003-2

  • Lehmann, J., & Rondon, M. (2006). Biochar soil management on highly weathered soils in the humid tropics. In N. Uphoff (Ed.), Biological approaches to sustainable soil (systems, pp. 517–530). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: science and technology. Earthscan.

    Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Lim, T. J., Spokas, K. A., Feyereisen, G., & Novak, J. M. (2016). Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142, 136–144. https://doi.org/10.1016/j.chemosphere.2015.06.069

    Article  CAS  Google Scholar 

  • Liu, X., Feng, P., & Zhang, X. (2012). Effect of biochar on soil aggregates in the Loess Plateau: Results from incubation experiments. International Journal of Agriculture and Biology, 14(6), 975–979. https://doi.org/10.1016/j.geoderma.2020.114323

    Article  CAS  Google Scholar 

  • Luo, C., Yang, J., Chen, W., & Han, F. (2020). Effect of biochar on soil properties on the Loess Plateau: Results from field experiments. Geoderma, 369. https://doi.org/10.1016/j.geoderma.2020.114323

  • Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1), 117–128. https://doi.org/10.1007/s11104-010-0327-0

    Article  CAS  Google Scholar 

  • Major, J., Steiner, C., Downie, A., & Lehmann, J. (2009). Biochar Effects on Nutrient Leaching. In: J. Lehmann, & S. Joseph, (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan Publishers Ltd., London, pp. 271–287.

  • Mensah, I. S., & Okonwu, K. (2016). Effect of pentaclethra macrophylla biochar on some growth indices of capsicum annuum l. in port harcourt, Nigeria. European Journal of Physical and Agricultural Sciences, 4(2), 10–19.

  • Mia, S., van Groenigen, J. W., van de Voorde, T. F. J., Oram, N. J., Bezemer, T. M., Mommer, L., & Jeffery, S. (2014). Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agriculture, Ecosystems and Environment, 191, 83–91. https://doi.org/10.1016/j.agee.2014.03.011

    Article  CAS  Google Scholar 

  • Mohawesh, O., Coolong, T., Aliedeh, M., & Qaraleh, S. (2018). Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulgarian Journal of Agricultural Science, 24(6), 1012–1019.

    Google Scholar 

  • Mohawesh, O., Aliedeh, M., Al-Soub, B., & Mahadeen, A. (2019). The potential use of biochar to enhance soil properties and plant growth performance under arid environment. ICOFAAS, 2019, 22.

    Google Scholar 

  • Mohawesh, O., Albalasmeh, A., Al-Hamaiedeh, H., Qaraleh, S., Maaitah, O., Bawalize, A., & Almajali, D. (2020). Controlled land application of olive mill wastewater (OMW): Enhance soil indices and barley growth performance in arid environments. Water, Air, and Soil Pollution, 231(5), 214. https://doi.org/10.1007/s11270-020-04612-z

    Article  CAS  Google Scholar 

  • Mohawesh, O., Albalasmeh, A., Gharaibeh, M., Deb, S., Simpson, C., Singh, S., Al-Soub, B., & Hanandeh, A. E. (2021). Potential use of biochar as an amendment to improve soil fertility and tomato and bell pepper growth performance under arid conditions. Journal of Soil Science and Plant Nutrition, 21, 2946–2956. https://doi.org/10.1007/s42729-021-00580-3

    Article  CAS  Google Scholar 

  • Mohawesh, O., & Karajeh, M. (2014). Effects of deficit irrigation on tomato and eggplant and their infection with the root-knot nematode under controlled environmental conditions. Archives of Agronomy and Soil Science, 60(8). https://doi.org/10.1080/03650340.2013.871385

  • Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(3), 369376.

    Google Scholar 

  • Olmo, M., Alburquerque, J. A., Barrón, V., del Campillo, M. C., Gallardo, A., Fuentes, M., & Villar, R. (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 50(8), 1177–1187. https://doi.org/10.1007/s00374-014-0959-y

    Article  Google Scholar 

  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (Issue 939). US Department of Agriculture.

  • Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of Soil Science and Plant Nutrition, 13(4), 991–1002. https://doi.org/10.4067/S0718-95162013005000078

    Article  Google Scholar 

  • Rodríguez, L., Salazar, P., & Preston, T. R. (2009). Effect of biochar and biodigester effluent on growth of maize in acid soils. Livestock Research for Rural Development, 21, 1– 11.

  • Salim, B. B. M. (2016). Influence of biochar and seaweed extract applications on growth, yield and mineral composition of wheat (Triticum aestivum L.) under sandy soil conditions. Annals of Agricultural Sciences, 61(2), 257–265. https://doi.org/10.1016/j.aoas.2016.06.001

    Article  Google Scholar 

  • Smider, B., & Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems and Environment, 191, 99–107. https://doi.org/10.1016/j.agee.2014.01.024

    Article  CAS  Google Scholar 

  • Sokchea, H., & Preston, T. R. (2011). Growth of maize in acid soil amended with biochar, derived from gasifier reactor and gasifier stove, with or without organic fertilizer (biodigester effluent). Livestock Research for Rural Development, 23(4), 1–7.

    Google Scholar 

  • Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581. https://doi.org/10.1016/j.chemosphere.2009.06.053

    Article  CAS  Google Scholar 

  • Stability, A., Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size. Methods of Soil Analysis; Part 1 - Physical and Mineralogical Methods (ASA/SSSA, Agronomy, 9(9), 425–442.

    Google Scholar 

  • Unger, R., Killorn, R., & Brewer, C. (2011). Effects of soil application of different biochars on selected soil chemical properties. Communications in Soil Science and Plant Analysis, 42(19), 2310–2321. https://doi.org/10.1080/00103624.2011.605489

    Article  CAS  Google Scholar 

  • USSL Staff. (1954). Diagnosis and improvement of saline and alkali soils, USDA Handbook No 60. Washington DC.

  • Vaccari, F. P., Maienza, A., Miglietta, F., Baronti, S., Di Lonardo, S., Giagnoni, L., Lagomarsino, A., Pozzi, A., Pusceddu, E., & Ranieri, R. (2015). Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems & Environment, 207, 163–170. https://doi.org/10.1016/j.agee.2015.04.015

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Xiao, Q., Zhu, L.-X., Zhang, H.-P., Li, X.-Y., Shen, Y.-F., & Li, S.-Q. (2016). Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop and Pasture Science, 67(5), 495–507.

    Article  Google Scholar 

  • Zeelie, A. (2012). Effect of Biochar on Selected Soil Physical Properties of Sandy Soil With Low Agricultural Suitability. Ph.D. thesis, Stellenbosch University, Stellenbosch.

  • Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32–39. https://doi.org/10.1016/j.geoderma.2013.04.018

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Jordan University of Science and Technology, Deanship of Scientific Research [grant numbers: 20220036].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Mohawesh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albalasmeh, A., Mohawesh, O., Alqudah, A. et al. The Potential of Biochar Application to Enhance Soil Quality, Yield, and Growth of Wheat and Barley Under Rainfed Conditions. Water Air Soil Pollut 234, 463 (2023). https://doi.org/10.1007/s11270-023-06493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06493-4

Keywords

Navigation