Skip to main content

Advertisement

Log in

Effect of biochar derived from barley straw on soil physicochemical properties, crop growth, and nitrous oxide emission in an upland field in South Korea

  • Environmental functions of biochar
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was conducted to investigate soil quality, Chinese cabbage growth, and N2O emission after biochar application in an upland field in South Korea. Each of the barley straw biochar (BC, applied at 10 ton ha−1), inorganic fertilizer (IF, applied at N-P-K = 320–78–198 kg ha−1), and BC + IF treatment areas were separated by a control (Cn) treatment area. Soils treated with BC and BC + IF treatments had lower bulk density and higher porosity than those in the Cn treatment areas. Soil chemical properties (pH, TN, Avail. P2O5, and CEC) after biochar addition were improved. In particular, soil pH and CEC related to crop nutrient availability were significantly increased in BC areas compared to those in Cn and IF areas. Fresh weights of Chinese cabbage grown under BC, IF, and BC + IF treatment conditions increased by 64.9, 78.4, and 112.0%, respectively, over that in the Cn treatment area. Total nutrient (TN, TP, and K) uptakes among the treatment areas were, in declining order, BC + IF (14.51 g plant−1) > IF > BC > Cn. More interestingly, the BC application had a positive effect on growth of Chinese cabbage under IF application conditions, and there was a tight relationship between the effect of BC application on Chinese cabbage growth and that of agronomic IF application efficiency. Compared to the IF results, total N2O flux was lower with BC (flux decreased by 60.6%) or BC + IF (flux decreased by 22.3%) treatments. These results indicate that Chinese cabbage yield, when cultivated in soil conditions such as those in an upland field in South Korea, can be increased by application of BC or a combination of BC and IF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agegnehu G, Bass AM, Nelson PN, Bird MI (2016) Benefits of biochar, compost and biochar—compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ 543:295–306

    Article  CAS  Google Scholar 

  • Alburquerque JA, Salazar P, Barrόn V, Torrent J, del Campillo MC, Gallardo A, Villar R (2013) Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev 33:475–484

    Article  CAS  Google Scholar 

  • Askari MS, O’Rourke SM, Holden NM (2015) Evaluation of soil quality for agricultural production using visible-near-infrared spectroscopy. Geoderma 243–244:80–91

    Article  CAS  Google Scholar 

  • Burrell LD, Zehetner F, Rampazzo N, Wimmer B, Soja G (2016) Long-term effects of biochar on soil physical properties. Geoderma 282:96–102

    Article  CAS  Google Scholar 

  • Carter S, Shackley S, Sohi S, Suy TB, Haefele S (2013) The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3:404–418

    Article  CAS  Google Scholar 

  • Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185

    Article  CAS  Google Scholar 

  • Chan KY, Zwieten LV, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chen D, Yuan L, Liu Y, Ji J, Hou H (2017) Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur J Agron 90:34–42

    Article  Google Scholar 

  • Cho HR, Zhang YS, Han KH, Cho HJ, Ryu JH, Jung KY, Cho KR, Ro AS, Lim SJ, Choi SC, Lee JI, Lee WK, Ahn BK, Kim BH, Kim CY, Park JH, Hyun SH (2012) Soil physical properties of arable land by land use across the country. J of Korean Soc of Soil Sci Fertil, 45: 344–352 (in Korean with English abstract)

  • Gelaw AM, Singh BR, Lal R (2015) Soil quality indices for evaluating smallholder agricultural land uses in nNorthern Ethiopia. Sustainability 7:2322–2337

    Article  CAS  Google Scholar 

  • Głąb T, Palmowska J, Zaleski T, Gondek K (2016) Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281:11–20

    Article  CAS  Google Scholar 

  • Gomez JD, Denef K, Stewart CES, Zheng J, Cotrufo F (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  CAS  Google Scholar 

  • Gou JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:347–361

    Article  CAS  Google Scholar 

  • Kamara A, Kamara HS, Kamara MS (2015) Effect of rice straw biochar on soil quality and the early growth and biomass yield of two rice varieties. Agricultural Science 6:798–806

    Article  Google Scholar 

  • Karhu K, Tattila T, Bergstrӧm I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH (2016) Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153–159

    Article  CAS  Google Scholar 

  • Kim MK, Hur SO, Kwon SI, Jung GB, Soun YK, Ha SK, Lee DB (2010) Prediction of soil erosion from agricultural uplands under precipitation change scenarios. J Korean Soc Soil Sci Fertil 43:789–792 (in Korean with English abstract)

    Google Scholar 

  • Kim TY, Aileen RD, Faridul A, Lee YB (2012) Evaluation of nitrogen and phosphorus balance in green manure-rice cropping systems without incorporation of green manure crops. Korean J Environ Agric, 31: 308–312 (in Korean with English abstract)

  • Külcü R, Yaldiz O (2014) The composting of agricultural wastes and the new parameter for the assessment of the process. Ecol Eng 69:220–225

    Article  Google Scholar 

  • Laghari M, Mirjat MS, Hu Z, Fazal S, Xiao B, Hu M, Chen Z, Guo D (2015) Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 135:313–320

    Article  CAS  Google Scholar 

  • Lai WY, Lai CM, Ke GR, Chung RS, Chen CT, Cheng CH, Pai CW, Chen SY, Chen CC (2013) The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng 44:1039–1044

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lehmann J, Pereira da Silva Jr J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Li B, Fan CH, Zhang H, Chen ZZ, Sun LY, Xiong ZQ (2015) Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos Environ 100:10–19

    Article  CAS  Google Scholar 

  • Liang F, Li G, Lin Q, Zhao X (2014) Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. J Integr Agric 13:525–532

    Article  CAS  Google Scholar 

  • Liu Q, Yan Z, Zhou J (2017) Consumer choices and motives for eco-labeled products in China: an empirical analysis based on the choice experiment. Sustainability 9:331–342

    Article  Google Scholar 

  • Liu Y, Lu H, Yang S, Wang Y (2016) Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop Res 191:161–167

    Article  Google Scholar 

  • Mia S, van Groenigen JW, van de Voorde TFJ, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91

    Article  CAS  Google Scholar 

  • Miao YX, Stewart Bobby A, Zhang FS (2011) Long-term experiments for sustainable nutrient management in China. A review. Agron Sustain Dev 31:397–414

    Article  Google Scholar 

  • Nelissen V, Saha BK, Ruysschaert G, Boeckx P (2014) Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 70:244–255

    Article  CAS  Google Scholar 

  • NIAST (2000) Methods of soil and plant analysis. National Institute of Agricultural Science and Technology. RDA, Suwon, Korea

    Google Scholar 

  • Nigussie A, Kissi E, Misganaw M, Ambaw G (2012) Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am-Eurasian J Agric Environ Sci 12:369–376

    CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niadou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Olmo M, Alburquerque JA, Barrón V, Campillo MCD, Gallardo A, Fuentes M, Villar R (2014) Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fertil Soils 50:1177–1187

    Article  Google Scholar 

  • Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13:991–1002

    Google Scholar 

  • Pandey V, Patel A, Patra DD (2016) Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecol Eng 90:361–366

    Article  Google Scholar 

  • Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166

    Article  Google Scholar 

  • Peng X, Zhu QH, Xie ZB, Darboux F, Holden NM (2016) The impact of manure, straw and biochar amendments on aggregation and erosion in hillslope Ultisol. Catena 138:30–37

    Article  CAS  Google Scholar 

  • Qin X, Li Y, Wang H, Liu C, Li J, Wan Y, Gao Q, Fan F, Liao Y (2016) Long-term effect of biochar application on yield-scaled greenhouse gas emission in a rice paddy cropping system: a four-year case study in south China. Sci Total Environ 569-570:1390–1401

    Article  CAS  Google Scholar 

  • Rolston DE (1986) Gas flux. In A. Klute (ed), Method of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, pp 1103–1119

  • Salahin N, Alam MK, Islam MM, Naher L, Majid M (2013) Effects of green manure crops and tillage practice on maize and rice yields and soil properties. Aust J Crop Sci 7:1901–1911

    Google Scholar 

  • Singh S, Singh JS, Kashyap AK (1999) Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol Biochem 31:1219–1228

    Article  CAS  Google Scholar 

  • Sukartono UWH, Kusuma Z, Nugroho WH (2011) Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. J Trop Agric 49:47–52

    CAS  Google Scholar 

  • Sun Z, Bruun EW, Arthur ELW, Moldrup JP, Hauggaard-Nielsen H, Elsgaar H (2014) Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biol Fertil Soils 50:1087–1097

    Article  CAS  Google Scholar 

  • Takolpuckdee P (2014) Transformation of agricultural market waste disposal to biochar soil amendments. Procedia Environ Sci 20:64–70

    Article  CAS  Google Scholar 

  • Talgre L, Lauringson E, Roostalu H, Astover A, Makke A (2012) Green manure as a nutrient source for succeeding crops. Plant Soil Environ 58:275–281

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  Google Scholar 

  • Troy SM, Lawlor PG, O’ Flynn CJ, Healy MG (2013) Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol Biochem, 60: 173–181

  • Usowicz B, Lipiec J, Łukowski M, Marczewski W, Usowicz J (2016) The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res 164:45–51

    Article  Google Scholar 

  • Ventura M, Zhang C, Baldi E, Fornasier F, Sorrenti G, Panzacchi P, Tonon G (2014) Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur J Soil Sci 65:186–195

    Article  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties on South Sumatra, Indonesia. Soil Sci and Plant Nutr 52:489–496

    Article  CAS  Google Scholar 

  • Zhang A, Bian R, Pan G, Cui L, Hussain Q, Li L, Zheng J, Zheng J, Zhang X, Han X, Yu X (2012) Effect of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160

    Article  Google Scholar 

  • Zhang D, Pan G, Wu G, Kibue GW, Li L, Zhang X, Zheng J, Zheng J, Cheng K, Joseph S, Liu X (2016) Biochar helps enhance maize productivity and reduce greenhouse gas emission under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 142:106–113

    Article  CAS  Google Scholar 

  • Zhang HM, Wang BR, Xu MG, Fan TL (2009) Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 19:199–207

    Article  CAS  Google Scholar 

  • Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011227042018)” of the Rural Development Administration, Republic of Korea. This work was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2017R1A6A3A11034049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Sik Cho.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SW., Kim, SH., Park, JH. et al. Effect of biochar derived from barley straw on soil physicochemical properties, crop growth, and nitrous oxide emission in an upland field in South Korea. Environ Sci Pollut Res 25, 25813–25821 (2018). https://doi.org/10.1007/s11356-018-1888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1888-3

Keywords

Navigation