Skip to main content
Log in

Competitive Bioadsorption of Pb+2 and Cu+2 Ions by Caryocar coriaceum WITTM. Barks

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Several environmental impacts are associated with the improper disposal of toxic metals in the environment. The bioadsorption stands out for being a cheap and easy-to-operate technique for remove those contaminants in wastewaters. When existing more than one contaminant present in the wastewater, the adsorptive study becomes complex, since there is competition between these species for the available active sites of the adsorbent. Therefore, this work aimed to study and compare the removal of Pb+2 and Cu+2 ions in aqueous solutions, both on mono- and multielementary systems, through the application of the bioadsorption technique using as the adsorbent the residues of the Caryocar coriaceum WITTM. barks. Characterization techniques like SEM–EDS, XRD, FTIR, and pHPZC were used to study the adsorbent. The results showed that all the systems follow the pseudo-second-order model, and the diffusing process was chemissoption associated with ions change. Langmuir model presented a better fit than Freundlich model. The maximum adsorptive capacity (mg g−1) obtained, for the multielementary systems, was 47.6 for Pb+2 and 20.4 for Cu+2. It was found that there was an inhibitory effect between Cu+2 and Pb+2, which resulted in a reduction of qmax values by approximately 37%, for Cu+2, and 55%, for Pb+2, compared to the monoelementary system, however, enabling the simultaneous removal of both contaminants, optimizing process time, and reflecting systems with real conditions. As a conclusion, it was found that the bark of Caryocar coriaceum WITTM. showed good adsorptive results compared to the literature and that it could be used as a adsorbent for solutions containing dissolved Pb+2 and Cu+2, for both mono- and multielemental systems.

Highlights

Caryocar coriaceum WITTM. bark was studied as an adsorbent for Cu+2 and Pb+2 metals’ ions in aqueous solutions, in mono and multielement adsorption systems.

Caryocar coriaceum WITTM. bark was characterized before and after being used as an absorbent.

Caryocar coriaceum WITTM. bark could be used as an adsorbent to remove Cu+2 and Pb+2 metals’ ions in aqueous solutions, enabling the noble use of these wastes before being discarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal, M., Singh, K., Gupta, R., & Dohare, R. K. (2020). Continuous fixed-bed adsorption of heavy metals using biodegradable adsorbent: Modeling and experimental study. Journal of Environmental Engineering (United States), 146(2), 1–14. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001636

    Article  Google Scholar 

  • Al-Qodah, Z., Yahya, M. A., & Al-Shannag, M. (2017). On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: A review. Desalination and Water Treatment, 85(August), 339–357. https://doi.org/10.5004/dwt.2017.21256

    Article  CAS  Google Scholar 

  • Amorim, D. J., Rezende, H. C., Oliveira, É. L., Almeida, I. L. S., Coelho, N. M. M., Matosa, T. N., & Araújo, C. S. T. (2016). Characterization of Pequi (Caryocar brasiliense) shells and evaluation of their potential for the adsorption of PbII ions in aqueous systems. Journal of the Brazilian Chemical Society, 27(3), 616–623. https://doi.org/10.5935/0103-5053.20150304

    Article  CAS  Google Scholar 

  • Azari, A., Nabizadeh, R., Nasseri, S., Mahvi, A. H., & Mesdaghinia, A. R. (2020). Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: Classification and analysis of last decade studies. Chemosphere, 250(5), 126238. https://doi.org/10.1016/j.chemosphere.2020.126238

    Article  CAS  Google Scholar 

  • Azoulay, K., Bencheikh, I., Moufti, A., Dahchour, A., Mabrouki, J., & El Hajjaji, S. (2020). Comparative study between static and dynamic adsorption efficiency of dyes by the mixture of palm waste using the central composite design. Chemical Data Collections, 27, 100385. https://doi.org/10.1016/j.cdc.2020.100385

  • Blagojev, N., Kukić, D., Vasić, V., Šćiban, M., Prodanović, J., & Bera, O. (2019). A new approach for modelling and optimization of Cu(II) biosorption from aqueous solutions using sugar beet shreds in a fixed-bed column. Journal of Hazardous Materials, 363(June 2018), 366–375. https://doi.org/10.1016/j.jhazmat.2018.09.068

    Article  CAS  Google Scholar 

  • Breda, C. A., Morgado, D. L., Benedito, O., Assis, G., Cristina, M., & Duarte, T. (2017). Processing and characterization of chitosan films with incorporation of ethanolic extract from “ Pequi ” Peels. Macromolecular Research. https://doi.org/10.1007/s13233-017-5143-4

    Article  Google Scholar 

  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148(August 2017), 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  Google Scholar 

  • Chakraborty, R., Asthana, A., Singh, A. K., Jain, B., & Susan, A. B. H. (2022). Adsorption of heavy metal ions by various low-cost adsorbents: A review. International Journal of Environmental Analytical Chemistry, 102(2), 342–379. https://doi.org/10.1080/03067319.2020.1722811

    Article  CAS  Google Scholar 

  • Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 307(P1), 135545. https://doi.org/10.1016/j.chemosphere.2022.135545

    Article  CAS  Google Scholar 

  • De Morais, M. J., Oliveira, M. S., Barbosa, E. G., & Cruz, G. H. T. (2016). Caracterização da casca de pequi (Caryocar Brasiliense Camb) para sua utilização como biomassa. Congresso de Ensino, Pesqueisa e Extensão da UEG, 2(Ic), 17.

    Google Scholar 

  • Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., et al. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506, 355–364. https://doi.org/10.1016/j.jcis.2017.07.069

    Article  CAS  Google Scholar 

  • Dias, F. de S., Meira, L. A., Carneiro, C. N., dos Santos, L. F. M., Guimarães, L. B., Coelho, N. M. M., et al. (2023). Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. TrAC - Trends in Analytical Chemistry, 158, 116891. https://doi.org/10.1016/j.trac.2022.116891

  • Dutta, S., Datta, A., Zaid, A., & Bhat, J. A. (2020). Metalloids and Their Impact on the Environment. Metalloids in Plants: advances and future prospects. https://doi.org/10.1002/9781119487210.ch2

  • El-Araby, H. A., Ibrahim, A. M. M. A., Mangood, A. H., & Abdel-Rahman, A.A.-H. (2017). Sesame husk as adsorbent for copper(II) ions removal from aqueous solution. Journal of Geoscience and Environment Protection, 05(07), 109–152. https://doi.org/10.4236/gep.2017.57011

    Article  Google Scholar 

  • Escudero-Oñate, C., & Villaescusa, I. (2018). The thermodynamics of heavy metal sorption onto lignocellulosic biomass. Heavy Metals. https://doi.org/10.5772/intechopen.74260

    Article  Google Scholar 

  • Falaki, Z., & Bashiri, H. (2021). Preparing an adsorbent from the unused solid waste of Rosewater extraction for high efficient removal of Crystal Violet. Journal of the Iranian Chemical Society, 18(10), 2689–2702. https://doi.org/10.1007/s13738-021-02222-y

    Article  CAS  Google Scholar 

  • Fei, Q., & Bei, W. (2007). Single- and multi-component adsorption of Pb, Cu, and Cd on peat. Bulletin of Environmental Contamination and Toxicology, 78(3–4), 265–269. https://doi.org/10.1007/s00128-007-9127-5

    Article  CAS  Google Scholar 

  • Focarelli, F., Giachino, A., & Waldron, K. J. (2022). Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLoS Pathogens, 18(7), 1–19. https://doi.org/10.1371/journal.ppat.1010617

    Article  CAS  Google Scholar 

  • Futalan, C. M., Kan, C. C., Dalida, M. L., Hsien, K. J., Pascua, C., & Wan, M. W. (2011). Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers, 83(2), 528–536. https://doi.org/10.1016/j.carbpol.2010.08.013

    Article  CAS  Google Scholar 

  • Giraldo, L., & Moreno-Piraján, J. C. (2008). Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues. Brazilian Journal of Chemical Engineering, 25(1), 143–151. https://doi.org/10.1590/S0104-66322008000100015

    Article  CAS  Google Scholar 

  • Gugushe, A. S., Mpupa, A., Munonde, T. S., Nyaba, L., & Nomngongo, P. N. (2021). Adsorptive removal of cd, cu, ni and mn from environmental samples using fe3o4-zro2@aps nanocomposite: Kinetic and equilibrium isotherm studies. Molecules, 26(11), 3209. https://doi.org/10.3390/molecules26113209

  • Hossain, A., Ngo, H., Guo, W., & Nguyen, V. (2012). Biosorption of Cu(II) From water by banana peel based biosorbent: experiments and models of adsorption and desorption. Journal of Water Sustainability, 2(1), 87–104. https://doi.org/10.11912/jws.2.1.87-104

  • Hussain, A., Yousaf, U., Rahman Ch, U., Ahmad, J., Nawaz, M., Faried, H. N., & Ul-Haq, T. (2021). Synthesis and application of modified orchard waste biochar for efficient scavenging of copper from aqueous solutions. Arabian Journal for Science and Engineering, 47(0123456789), 333–345. https://doi.org/10.1007/s13369-021-05362-8

  • Ighalo, J. O., Adeniyi, A. G., Eletta, O. A. A. A., & Arowoyele, L. T. (2020). Competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media using biochar from oil palm ( Elaeis guineensis ) fibers: a kinetic and equilibrium study. Indian Chemical Engineer, 63(5), 1–11. https://doi.org/10.1080/00194506.2020.1787870

  • Iravani Mohammadabadi, S., & Javanbakht, V. (2021). Fabrication of dual cross-linked spherical treated waste biomass/alginate adsorbent and its potential for efficient removal of lead ions from aqueous solutions. Industrial Crops and Products, 168, 113575. https://doi.org/10.1016/j.indcrop.2021.113575

  • Jumina, Siswanta, D., Nofiati, K., Imawan, A. C., Priastomo, Y., & Ohto, K. (2019). Synthesis of C-4-hydroxy-3-methoxyphenylcalix[4]resorcinarene and its application as adsorbent for lead(II), copper(II) and chromium(III). Bulletin of the Chemical Society of Japan, 92(4), 825–831. https://doi.org/10.1246/bcsj.20180323

    Article  CAS  Google Scholar 

  • Jumina, Priastomo, Y., Setiawan, H. R., Kurniawan, Y. S., & Ohto, K. (2020). Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through an adsorption process using C-phenylcalix[4]pyrogallolarene material. Journal of Environmental Chemical Engineering, 8(4), 103971. https://doi.org/10.1016/j.jece.2020.103971

    Article  CAS  Google Scholar 

  • Kamari, A., Yusoff, S. N. M., Abdullah, F., & Putra, W. P. (2014). Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. Journal of Environmental Chemical Engineering, 2(4), 1912–1919. https://doi.org/10.1016/j.jece.2014.08.014

    Article  CAS  Google Scholar 

  • Kayranli, B., Gok, O., Yilmaz, T., Gok, G., Celebi, H., Seckin, I. Y., & Kalat, D. (2021). Zinc removal mechanisms with recycled lignocellulose: From fruit residual to biosorbent then soil conditioner. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-021-05260-7

    Article  Google Scholar 

  • Li, C., Wang, X., Meng, D., & Zhou, L. (2018). Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. International Journal of Biological Macromolecules, 107, 1871–1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058

    Article  CAS  Google Scholar 

  • Liu, R., & Lian, B. (2019). Non-competitive and competitive adsorption of Cd2+, Ni2+, and Cu2+ by biogenic vaterite. Science of the Total Environment, 659(1), 122–130. https://doi.org/10.1016/j.scitotenv.2018.12.199

    Article  CAS  Google Scholar 

  • Liu, X., Xu, X., Dong, X., & Park, J. (2020). Competitive adsorption of heavy metal ions from aqueous solutions onto activated carbon and agricultural waste materials. Polish Journal of Environmental Studies, 29(1), 749–761. https://doi.org/10.15244/pjoes/104455

    Article  CAS  Google Scholar 

  • Loulidi, I., Boukhlifi, F., Ouchabi, M., Amar, A., Jabri, M., Kali, A., et al. (2020). Adsorption of crystal violet onto an agricultural waste residue: Kinetics, isotherm, thermodynamics, and mechanism of adsorption. Scientific World Journal, 2020(5873521), 1–9. https://doi.org/10.1155/2020/5873521

  • Maaloul, N., Oulego, P., Rendueles, M., Ghorbal, A., & Díaz, M. (2020). Synthesis and characterization of eco-friendly cellulose beads for copper (II) removal from aqueous solutions. Environmental Science and Pollution Research, 27(19), 23447–23463. https://doi.org/10.1007/s11356-018-3812-2

    Article  CAS  Google Scholar 

  • Madala, S., Nadavala, S. K., Vudagandla, S., Boddu, V. M., & Abburi, K. (2017). Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent. Arabian Journal of Chemistry, 10, S1883–S1893. https://doi.org/10.1016/j.arabjc.2013.07.017

    Article  CAS  Google Scholar 

  • Mahdi, Z., Yu, Q. J., & El Hanandeh, A. (2019). Competitive adsorption of heavy metal ions (Pb 2+, Cu 2+, and Ni 2+ ) onto date seed biochar: Batch and fixed bed experiments. Separation Science and Technology (philadelphia), 54(6), 888–901. https://doi.org/10.1080/01496395.2018.1523192

    Article  CAS  Google Scholar 

  • Menezes, J. M. C., da Silva Bento, A. M., da Silva, J. H., de Paula Filho, F. J., da Costa, J. G. M., Coutinho, H. D. M., & Pereira Teixeira, R. N. (2020). Equilibrium, kinetics and thermodynamics of lead (II) adsorption in bioadsorvent composed by Caryocar coriaceum Wittm barks. Chemosphere, 261, 128144. https://doi.org/10.1016/j.chemosphere.2020.128144

  • Mitra, T., & Das, S. K. (2020). Removal of Cu(II) ions using bio-adsorbents in fixed—Bed continuous bed mode—A comparative study and scale-up design. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.13417

    Article  Google Scholar 

  • Mohammad, S. G., Ahmed, S. M., & El-Sayed, M. M. H. (2020). Removal of copper (II) ions by eco-friendly raw eggshells and nano-sized eggshells: a comparative study. Chemical Engineering Communications, 209(1), 1–13. https://doi.org/10.1080/00986445.2020.1835875

  • Neris, J. B., Luzardo, F. H. M., da Silva, E. G. P., & Velasco, F. G. (2019). Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review. Chemical Engineering Journal, 357(April 2018), 404–420. https://doi.org/10.1016/j.cej.2018.09.125

    Article  CAS  Google Scholar 

  • Pasgar, A., Nasiri, A., & Javid, N. (2022). Single and competitive adsorption of Cu2+ and Pb2+ by tea pulp from aqueous solutions. Environmental Health Engineering and Management, 9(1), 65–74. https://doi.org/10.34172/EHEM.2022.08

    Article  CAS  Google Scholar 

  • Ragavendran, P., Sophia, D., Raj, C. A., & Gopalakrishnan, V. K. (2011). Functional group analysis of various extracts of Aerva lanata (L.,) by FTIR spectrum. Pharmacologyonline, 364, 358–364.

    Google Scholar 

  • Rahman, A., Yoshida, K., Islam, M. M., & Kobayashi, G. (2023). Investigation of efficient adsorption of toxic heavy metals (chromium, lead, cadmium) from aquatic environment using orange peel cellulose as adsorbent. Sustainability (Switzerland), 15(5), 1–18. https://doi.org/10.3390/su15054470

  • Rasoulpoor, K., Poursattar Marjani, A., & Nozad, E. (2020). Competitive chemisorption and physisorption processes of a walnut shell based semi-IPN bio-composite adsorbent for lead ion removal from water: Equilibrium, Kinetic and Thermodynamic studies. Environmental Technology and Innovation, 20, 101133. https://doi.org/10.1016/j.eti.2020.101133

    Article  CAS  Google Scholar 

  • Regalbuto, J. R., & Robles, J. O. (2004). The engineering of Pt / carbon catalyst preparation for application on Proton Exchange Fuel Cell Membrane (PEFCM). Chicago.

  • Sabela, M. I., Kunene, K., Kanchi, S., Xhakaza, N. M., Bathinapatla, A., Mdluli, P., et al. (2019). Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study. Arabian Journal of Chemistry, 12(8), 4331–4339. https://doi.org/10.1016/j.arabjc.2016.06.001

    Article  CAS  Google Scholar 

  • Saha, U. K., Taniguchi, S., & Sakurai, K. (2002). Simultaneous adsorption of cadmium, zinc, and lead on Hydroxyaluminum- and Hydroxyaluminosilicate-Montmorillonite complexes. Soil Science Society of America Journal, 66(1), 117–128. https://doi.org/10.2136/sssaj2002.1170

    Article  CAS  Google Scholar 

  • Sahmoune, M. N. (2019). Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environmental Chemistry Letters, 17(2), 697–704. https://doi.org/10.1007/s10311-018-00819-z

    Article  CAS  Google Scholar 

  • Santhosh, A., & Dawn, S. S. (2021). Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. Water Science and Technology, 00, 1–12. https://doi.org/10.2166/wst.2021.303

    Article  CAS  Google Scholar 

  • Słota, M., Wąsik, M., Stołtny, T., Machoń-Grecka, A., & Kasperczyk, S. (2022). Effects of environmental and occupational lead toxicity and its association with iron metabolism. Toxicology and Applied Pharmacology, 434, 115794. https://doi.org/10.1016/j.taap.2021.115794

  • Soetaredjo, F. E., Kurniawan, A., Ki, O. L., & Ismadji, S. (2013). Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system. Chemical Engineering Journal, 219, 137–148. https://doi.org/10.1016/j.cej.2012.12.077

  • Sousa Neto, V. O., Oliveira, A. G., Teixeira, R. N. P., Silva, M. A. A., Freire, P. T. C., Keukeleire, D. D., & Nascimento, R. F. (2011). Use of coconut bagasse as alternative adsorbent for separation of copper (II) ions from aqueous solutions: Isotherms, kinetics, and thermodynamic studies. BioResources, 6(3), 3376–3395. https://doi.org/10.15376/biores.6.3.3376-3395

    Article  Google Scholar 

  • Tang, X., Ran, G., Li, J., Zhang, Z., & Xiang, C. (2021). Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies. Journal of Hazardous Materials, 402(July 2020), 123579. https://doi.org/10.1016/j.jhazmat.2020.123579

    Article  CAS  Google Scholar 

  • Taşar, Ş., & Özer, A. (2020). A thermodynamic and kinetic evaluation of the adsorption of pb(Ii) ions using peanut (arachis hypogaea) shell-based biochar from aqueous media. Polish Journal of Environmental Studies, 29(1), 293–305. https://doi.org/10.15244/pjoes/103027

  • Tavana, M., Pahlavanzadeh, H., & Zarei, M. J. (2020). The novel usage of dead biomass of green algae of Schizomeris leibleinii for biosorption of copper(II) from aqueous solutions: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 8(5), 104272. https://doi.org/10.1016/j.jece.2020.104272

    Article  CAS  Google Scholar 

  • Touihri, M., Guesmi, F., Hannachi, C., Hamrouni, B., Sellaoui, L., Badawi, M., et al. (2021). Single and simultaneous adsorption of Cr(VI) and Cu (II) on a novel Fe3O4/pine cones gel beads nanocomposite: Experiments, characterization and isotherms modeling. Chemical Engineering Journal, 416, 129101. https://doi.org/10.1016/j.cej.2021.129101

  • Wang, J., & Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390(November 2019), 122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  Google Scholar 

  • Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: A review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  Google Scholar 

  • Wani, W., Masoodi, K. Z., Zaid, A., Wani, S. H., Shah, F., Meena, V. S., et al. (2018). Engineering plants for heavy metal stress tolerance. Rendiconti Lincei, 29(3), 709–723. https://doi.org/10.1007/s12210-018-0702-y

    Article  Google Scholar 

  • Yadav, V., & Bhagat, M. (2020). Isotherm, kinetics and thermodynamic parameters study of arsenic ( III ) and copper ( II ) adsorption onto Limonia acidissima shell carbon. Desalination and Water Treatment, 184(April), 214–224. https://doi.org/10.5004/dwt.2020.25369

    Article  CAS  Google Scholar 

  • Yahya, M. D., Abubakar, H., Obayomi, K. S., Iyaka, Y. A., & Suleiman, B. (2020). Simultaneous and continuous biosorption of Cr and Cu (II) ions from industrial tannery effluent using almond shell in a fixed bed column. Results in Engineering. https://doi.org/10.1016/j.rineng.2020.100113

    Article  Google Scholar 

  • Zhang, Y., Yuan, K., Magagnin, L., Wu, X., Jiang, Z., & Wang, W. (2023). Schiff base functionalized silica aerogels for enhanced removal of Pb ( II ) and Cu ( II ): Performances, DFT calculations and LCA analysis. Chemical Engineering Journal, 462(February), 142019. https://doi.org/10.1016/j.cej.2023.142019

    Article  CAS  Google Scholar 

  • Zhu, Y., Hu, J., & Wang, J. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221–222, 155–161. https://doi.org/10.1016/j.jhazmat.2012.04.026

    Article  CAS  Google Scholar 

  • Zou, W., Bai, H., & Gao, S. (2012). Competitive adsorption of neutral red and Cu2+ onto pyrolytic char: Isotherm and kinetic study. Journal of Chemical and Engineering Data, 57(10), 2792–2801. https://doi.org/10.1021/je300686u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special acknowledgment to the Cearense Foundation for Support to Scientific and Technological Development (FUNCAP), for financial support. Number: DEP-0164-00333.01.00/19, SPU Nº:10602539/2019.

Funding

This work was supported by the Cearense Foundation for Support to Scientific and Technological Development (FUNCAP), Number: DEP-0164-00333.01.00/19, SPU Nº:10602539/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Douglas M. Coutinho.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2962 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, J.M.C., de Paula Filho, F.J., da Costa, J.G.M. et al. Competitive Bioadsorption of Pb+2 and Cu+2 Ions by Caryocar coriaceum WITTM. Barks. Water Air Soil Pollut 234, 428 (2023). https://doi.org/10.1007/s11270-023-06419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06419-0

Keywords

Navigation